Foreword

“The first comprehensive book covering the full spectrum of a young, fast-growing
research field, graph neural networks (GNNs), written by authoritative authors!”

Jiawei Han (Michael Aiken Chair Professor at University of Illinois at Urbana-
Champaign, ACM Fellow and IEEE Fellow)

“This book presents a comprehensive and timely survey on graph representation
learning. Edited and contributed by the best group of experts in this area, this book
is a must-read for students, researchers and pratictioners who want to learn anything
about Graph Neural Networks.”

Heung-Yeung “Harry” Shum (Former Executive Vice President for Technology
and Research at Microsoft Research, ACM Fellow, IEEE Fellow, FREng)

“As the new frontier of deep learning, Graph Neural Networks offer great potential
to combine probabilistic learning and symbolic reasoning, and bridge knowledge-
driven and data-driven paradigms, nurturing the development of third-generation
Al This book provides a comprehensive and insightful introduction to GNN, rang-
ing from foundations to frontiers, from algorithms to applications. It is a valuable
resource for any scientist, engineer and student who wants to get into this exciting
field.”

Bo Zhang (Member of Chinese Academy of Science, Professor at Tsinghua Uni-
versity)

“Graph Neural Networks are one of the hottest areas of machine learning and this
book is a wonderful in-depth resource covering a broad range of topics and applica-
tions of graph representation learning.”

Jure Leskovec (Associate Professor at Stanford University, and investigator at
Chan Zuckerberg Biohub).

“Graph Neural Networks are an emerging machine learning model that is already
taking the scientific and industrial world by storm. The time is perfect to get in on the
action — and this book is a great resource for newcomers and seasoned practitioners
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alike! Its chapters are very carefully written by many of the thought leaders at the
forefront of the area.”

Petar Velickovi¢ (Senior Research Scientist, DeepMind)



Preface

The field of graph neural networks (GNNs) has seen rapid and incredible strides over
the recent years. Graph neural networks, also known as deep learning on graphs,
graph representation learning, or geometric deep learning, have become one of the
fastest-growing research topics in machine learning, especially deep learning. This
wave of research at the intersection of graph theory and deep learning has also influ-
enced other fields of science, including recommendation systems, computer vision,
natural language processing, inductive logic programming, program synthesis, soft-
ware mining, automated planning, cybersecurity, and intelligent transportation.

Although graph neural networks have achieved remarkable attention, it still faces
many challenges when applying them into other domains, from the theoretical un-
derstanding of methods to the scalability and interpretability in a real system, and
from the soundness of the methodology to the empirical performance in an applica-
tion. However, as the field rapidly grows, it has been extremely challenging to gain
a global perspective of the developments of GNNs. Therefore, we feel the urgency
to bridge the above gap and have a comprehensive book on this fast-growing yet
challenging topic, which can benefit a broad audience including advanced under-
graduate and graduate students, postdoctoral researchers, lecturers, and industrial
practitioners.

This book is intended to cover a broad range of topics in graph neural networks,
from the foundations to the frontiers, and from the methodologies to the applica-
tions. Our book is dedicated to introducing the fundamental concepts and algorithms
of GNNs, new research frontiers of GNNs, and broad and emerging applications
with GNNs.

Book Website and Resources
The website and further resources of this book can be found at: https://
graph-neural-networks.github.io/| The website provides online preprints

and lecture slides of all the chapters. It also provides pointers to useful material and
resources that are publicly available and relevant to graph neural networks.
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To the Instructors

The book can be used for a one-semester graduate course for graduate students.
Though it is mainly written for students with a background in computer science,
students with a basic understanding of probability, statistics, graph theory, linear
algebra, and machine learning techniques such as deep learning will find it easily
accessible. Some chapters can be skipped or assigned as homework assignments for
reviewing purposes if students have knowledge of a chapter. For example, if students
have taken a deep learning course, they can skip Chapter 1. The instructors can also
choose to combine Chapters 1, 2, and 3 together as a background introduction course
at the very beginning.

When the course focuses more on the foundation and theories of graph neural net-
works, the instructor can choose to focus more on Chapters 4-8 while using Chapters
19-27 to showcase the applications, motivations, and limitations. Please refer to the
Editors’ Notes at the end of each chapter on how Chapters 4-8 and Chapters 19-27
are correlated. When the course focuses more on the research frontiers, Chapters
9-18 can be the pivot to organize the course. For example, an instructor can make
it an advanced graduate course where the students are asked to search and present
the most recent research papers in each different research frontier. They can also
be asked to establish their course projects based on the applications described in
Chapters 19-27 as well as the materials provided on our website.

To the Readers

This book was designed to cover a wide range of topics in the field of graph neu-
ral network field, including background, theoretical foundations, methodologies, re-
search frontiers, and applications. Therefore, it can be treated as a comprehensive
handbook for a wide variety of readers such as students, researchers, and profession-
als. You should have some knowledge of the concepts and terminology associated
with statistics, machine learning, and graph theory. Some backgrounds of the basics
have been provided and referenced in the first eight chapters. You should better also
have knowledge of deep learning and some programming experience for easily ac-
cessing the most of chapters of this book. In particular, you should be able to read
pseudocode and understand graph structures.

The book is well modularized and each chapter can be learned in a standalone
manner based on the individual interests and needs. For those readers who want
to have a solid understanding of various techniques and theories of graph neural
networks, you can start from Chapters 4-9. For those who further want to perform
in-depth research and advance related fields, please read those chapters of interest
among Chapters 9-18, which provide comprehensive knowledge in the most recent
research issues, open problems, and research frontiers. For those who want to ap-
ply graph neural networks to benefit specific domains, or aim at finding interesting
applications to validate specific graph neural networks techniques, please refer to
Chapters 19-27.
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Terminologies

This chapter describes a list of definitions of terminologies related to graph neural
networks used throughout this book.

1 Basic concepts of Graphs

* Graph: A graph is composed of a node set and an edge set, where nodes rep-
resent entities and edges represent the relationship between entities. The nodes
and edges form the topology structure of the graph. Besides the graph structure,
nodes, edges, and/or the whole graph can be associated with rich information
represented as node/edge/graph features (also known as attributes or contents).

* Subgraph: A subgraph is a graph whose set of nodes and set of edges are all
subsets of the original graph.

¢ Centrality: A centrality is a measurement of the importance of nodes in the
graph. The basic assumption of centrality is that a node is thought to be im-
portant if many other important nodes also connect to it. Common centrality
measurements include the degree centrality, the eigenvector centrality, the be-
tweenness centrality, and the closeness centrality.

* Neighborhood: The neighborhood of a node generally refers to other nodes that
are close to it. For example, the k-order neighborhood of a node, also called the
k-step neighborhood, denotes a set of other nodes in which the shortest path
distance between these nodes and the central node is no larger than k.

e Community Structure: A community refers to a group of nodes that are
densely connected internally and less densely connected externally.

¢ Graph Sampling: Graph sampling is a technique to pick a subset of nodes and/
or edges from the original graph. Graph sampling can be applied to train ma-
chine learning models on large-scale graphs while preventing severe scalability
issues.

XXXi
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Heterogeneous Graphs: Graphs are called heterogeneous if the nodes and/or
edges of the graph are from different types. A typical example of heteronomous
graphs is knowledge graphs where the edges are composed of different types.
Hypergraphs: Hypergraphs are generalizations of graphs in which an edge can
join any number of nodes.

Random Graph: Random graph generally aims to model the probability dis-
tributions over graphs that the observed graphs are generated from. The most
basic and well-studied random graph model, known as the Erdos—Renyi model,
assumes that the node set is fixed and each edge is identically and independently
generated.

Dynamic Graph: Dynamic graph refers to when at least one component of the
graph data changes over time, e.g., adding or deleting nodes, adding or deleting
edges, changing edges weights or changing node attributes, etc. If graphs are
not dynamic, we refer to them as static graphs.

2 Machine Learning on Graphs

Spectral Graph Theory: Spectral graph theory analyzes matrices associated
with the graph such as its adjacency matrix or Laplacian matrix using tools of
linear algebra such as studying the eigenvalues and eigenvectors of the matrix.
Graph Signal Processing: Graph Signal Processing (GSP) aims to develop
tools for processing signals defined on graphs. A graph signal refers to a finite
collection of data samples with one sample at each node in the graph.
Node-level Tasks: Node-level tasks refer to machine learning tasks associated
with individual nodes in the graph. Typical examples of node-level tasks include
node classification and node regression.

Edge-level Tasks: Edge-level tasks refer to machine learning tasks associated
with a pair of nodes in the graph. A typical example of an edge-level task in
link prediction.

Graph-level Tasks: Graph-level tasks refer to machine learning tasks associ-
ated with the whole graph. Typical examples of graph-level tasks include graph
classification and graph property prediction.

Transductive and Inductive Learning: Transductive learning refers to that
the targeted instances such as nodes or edges are observed at the training time
(though the labels of the targeted instances remain unknown) and inductive
learning aims to learn the model which is generalizable to unobserved instances.

3 Graph Neural Networks

Network embedding: The goal of network embedding is to represent each node
in the graph as a low-dimensional vector so that useful information such as the
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graph structures and some properties of the graph is preserved in the embedding
vectors. Network embedding is also referred to as graph embedding and node
representation learning.

* Graph Neural Network: Graph neural network refers to any neural network
working on the graph data.

¢ Graph Convolutional Network: Graph convolutional network usually refers to
a specific graph neural network proposed by Kipf and Welling Kipf and Welling
(2017a). It is occasionally used as a synonym for graph neural network, i.e.,
referring to any neural network working on the graph data, in some literature.

* Message-Passing: Message-passing is a framework of graph neural networks in
which the key step is to pass messages between different nodes based on graph
structures in each neural network layer. The most widely adopted formulation,
usually denoted as message-passing neural networks, is to only pass messages
between nodes that are directly connected |Gilmer et all (2017). The message
passing functions are also called graph filters and graph convolutions in some
literature.

* Readout: Readout refers to functions that summarize the information of indi-
vidual nodes to form more high-level information such as forming a subgraph/super-
graph or obtaining the representations of the entire graph. Readout is also called
pooling and graph coarsening in some literature.

¢ Graph Adversarial Attack: Graph adversarial attacks aim to generate worst-
case perturbations by manipulating the graph structure and/or node features so
that the performance of some models are downgraded. Graph adversarial attacks
can be categorized based on the attacker’s goals, capabilities, and accessible
knowledge.

* Robustness certificates: Methods providing formal guarantees that the predic-
tion of a GNN is not affected even when perturbations are performed based on
a certain perturbation model.






Notations

This Chapter provides a concise reference that describes the notations used through-

out this book.

Numbers, Arrays, and Matrices

A scalar

A vector

A matrix

An identity matrix

The set of real numbers

The set of complex numbers

The set of integers

The set of real n-length vectors

The set of real m x n matrices

The real interval including a and b

The real interval including a but excluding b
The element of the vector x with index i
The element of matrix X’s indexed by Row i and Column j

Graph Basics

A graph

Edge set

Vertex set

Adjacent matrix of a graph

Laplacian matrix

Diagonal degree matrix

Isomorphism between graphs ¢ and 77
S is a subgraph of graph ¢4

J is a proper subgraph of graph ¢
Union of graphs /¢ and ¢

QU ™R HQ

§§§IIZ
Nelex

XXXV



XXXVi

Intersection of graphs 7 and ¢

Disjoint Union of graphs ¢ and ¢

Cartesian Product of graphs of graphs # and ¢
The join of graphs .7 and ¢

Basic Operations

Transpose of matrix X
Dot product of matrices X and Y

Element-wise (Hadamard) product of matrices X and Y

Determinant of X

p-norm (also called ¢, norm) of x
Union

Intersection

Subset

Proper subset

Inner prodct of vector x and y

Functions

The function f with domain A and range B
Derivative of y with respect to x

Partial derivative of y with respect to x

Gradient of y with respect to x

Matrix derivatives of y with respect to matrix X
The Hessian matrix of function f at input vector x
Definite integral over the entire domain of x
Definite integral with respect to x over the set S

A function of x parametrized by 0

Convolution between functions f and g

Probablistic Theory
A probability distribution of a

A conditional probabilistic distribution of b given a
The random variables a and b are independent

Variables a and b are conditionally independent given c

Random variable a has a distribution p

Notations

gnH
G+
G xH
g AH

XT

X -YorXY
XoY
det(X)

%
S5

X,y >

p(a)
p(bla)
alb
alb|c

ar~p

The expectation of f(a) with respect to the variable a under distri- E,[f(a)]

bution p

Gaussian distribution over x with mean g and covariance X

N (x5, )



