
Chapter 7
Interpretability in Graph Neural Networks

Ninghao Liu and Qizhang Feng and Xia Hu

Abstract Interpretable machine learning, or explainable artificial intelligence, is ex-
periencing rapid developments to tackle the opacity issue of deep learning tech-
niques. In graph analysis, motivated by the effectiveness of deep learning, graph
neural networks (GNNs) are becoming increasingly popular in modeling graph data.
Recently, an increasing number of approaches have been proposed to provide ex-
planations for GNNs or to improve GNN interpretability. In this chapter, we offer
a comprehensive survey to summarize these approaches. Specifically, in the first
section, we review the fundamental concepts of interpretability in deep learning. In
the second section, we introduce the post-hoc explanation methods for understand-
ing GNN predictions. In the third section, we introduce the advances of developing
more interpretable models for graph data. In the fourth section, we introduce the
datasets and metrics for evaluating interpretation. Finally, we point out future direc-
tions of the topic.

7.1 Background: Interpretability in Deep Models

Deep learning has become an indispensable tool for a wide range of applications
such as image processing, natural language processing, and speech recognition. De-
spite the success, deep models have been criticized as “black boxes” due to their
complexity in processing information and making decisions. In this section, we in-
troduce the research background of interpretability in deep models, including the

Ninghao Liu
Department of CSE, Texas A&M University, e-mail: nhliu43@tamu.edu

Qizhang Feng
Department of CSE, Texas A&M University, e-mail: qf31@tamu.edu

Xia Hu
Department of CSE, Texas A&M University, e-mail: xiahu@tamu.edu

121

nhliu43@tamu.edu
qf31@tamu.edu
xiahu@tamu.edu

122 Ninghao Liu and Qizhang Feng and Xia Hu

definition of interpretability/interpretation, the reasons for exploring model inter-
pretation, the methods of obtaining interpretation in traditional deep models, the
opportunities and challenges to achieve interpretability in GNN models.

7.1.1 Definition of Interpretability and Interpretation

There is no unified mathematical definition of interpretability. A commonly used
(nonmathematical) definition of interpretability is given below (Miller, 2019).

Definition 7.1. Interpretability is the degree to which an observer can understand
the cause of a decision.

There are three elements in the above definition: “understand”, “cause”, and “a
decision”. According to different scenarios, it is common that these elements are
re-weighted or even some elements are replaced. First, in the context of machine
learning systems where the role of humans needs to be emphasized, the definition
of interpretability is usually revised to adapt to humans (Kim et al, 2016), where in-
terpretation results that better facilitate human understanding and reasoning habits
are more desirable. Second, from the term “cause” in the definition, it is natural to
think that interpretation studies causality properties in models. While causality is
important in developing certain types of interpretation methods, it is also common
that interpretation is obtained beyond the framework of causal theories. Third, there
is an increasing number of techniques that jump out of the scheme of explaining “a
decision”, and try to understand a broader range of entities such as model compo-
nents (Olah et al, 2018) and data representations.

The interpretation is one mode in which an observer may obtain an understand-
ing of a model or its predictions. A general and widely followed definition is as
below (Montavon et al, 2018).

Definition 7.2. An interpretation is the mapping of an abstract concept into a do-
main that the human can understand.

Typical examples of human-understandable domains include arrays of pixels in im-
ages or words in texts. There are two elements that merit attention in the above defi-
nition: “concept” and “understand”. First, the “concept” to be explained could refer
to different aspects, such as a predicted class (i.e., the logit value of the predicted
class), the perception of a model component, or the meaning of a latent dimension.
Second, in specific scenarios where user experience is important, it is necessary to
transfer raw interpretation to the format that facilitates user comprehension, some-
times even with the cost of sacrificing interpretation accuracy.

It is also worth noting that, in this work, we distinguish between “interpretation”
and “explanation”. Although their differences have not been formally defined, in lit-
eratures, explanation mainly refers to the collection of important features for a given
prediction (e.g., classification or regression) (Montavon et al, 2018). Meanwhile,
“explanation” is more likely to be used if we are studying post-hoc interpretation

7 Interpretability in Graph Neural Networks 123

Interpretation
Interpretation

Improvement

DevelopersEnd Users

Fig. 7.1: Left: Interpretation could benefit user experiences in interaction with
models. Right: Through interpretation, we could identify model behaviors that are
not desirable according to humans, and work on improving the model accord-
ingly (Ribeiro et al, 2016).

or human-understandable interpretation. “Interpretation” usually refers to a broader
range of concepts, especially to emphasize that the model itself is intrinsically in-
terpretable (i.e., the transparency of the model).

7.1.2 The Value of Interpretation

There are several pragmatic reasons that motivate people to study and improve
model interpretability. Depending on who finally benefits from interpretation, we
divide the reasons into model-oriented and user-oriented, as shown in Fig. 7.1.

7.1.2.1 Model-Oriented Reasons

Interpretation is an effective tool to diagnose the defects in models and provide
directions on how to improve. Therefore, after several iterations of model updates,
it is possible to obtain better models with particular properties coming about, and we
could apply these models to our advantage. There are several properties that have
been considered in literatures that are summarized as below.

1. Credibility: A model is regarded as credible if the rationale used behind pre-
dictions is consistent with the well-established domain knowledge. Through
interpretation, we could observe whether the predictions are based on proper
evidences, or they are simply from the exploitation of artifacts in data. By
extracting explanations from a model and making the explanations to match
human-annotated evidences in data, we are able to improve the model’s credi-
bility when making decisions (Du et al, 2019; Wang et al, 2018c).

2. Fairness: Machine learning systems have the risk of amplifying societal stereo-
types if they rely on sensitive attributes, such as race, gender and age, in making
predictions. Through interpretation, we could observe whether the predictions

124 Ninghao Liu and Qizhang Feng and Xia Hu

are based on sensitive features that are required to be avoided in real applica-
tions.

3. Adversarial-Attack Robustness: Adversarial attack refers to adding carefully-
crafted perturbations to input, where the perturbations are almost imperceptible
to humans, but can cause the model to make wrong predictions (Goodfellow
et al, 2015). Robustness against adversarial attacks is an increasingly impor-
tant topic in machine learning security. Recent studies have shown how inter-
pretation could help in discovering new attack schemes and designing defense
strategies (Liu et al, 2020d).

4. Backdoor-Attack Robustness: Backdoor attack refers to injecting malicious
functionality into a model, by either implanting additional modules or poison-
ing training data. The model will behave normally unless it is fed with input
containing patterns that trigger the malicious functionality. Studying model ro-
bustness against backdoor attacks is attracting more interest recently. Recent
research discovers that interpretation could be applied in identifying if a model
has been infected by backdoors (Huang et al, 2019c; Tang et al, 2020a).

7.1.2.2 User-Oriented Reasons

The interpretation could contribute to the construction of interfaces between humans
and machines.

1. Improving User Experiences: By providing intuitive visual information, inter-
pretation could gain user trust, and increase a system’s ease of use. For example,
in healthcare-related applications, if the model could explain to patients how it
makes diagnoses, the patients would be more convinced (Ahmad et al, 2018).
For another example, in a recommender system, providing explanations can
help users to make faster decisions and persuade users to purchase the recom-
mended products (Li et al, 2020c).

2. Facilitating Decision Making: In many applications, a model plays the role as
an assistant, while humans will make the final decision. In this case, interpreta-
tion helps shape human understandings towards instances, thus affecting subse-
quent decision-making processes. For example, in outlier detection, some out-
liers own malicious properties that should be handled with caution, while some
are benign instances that simply happen to be “different”. With interpretation, it
is much easier for human decision-makers to understand whether a given outlier
is malicious or benign.

7.1.3 Traditional Interpretation Methods

In general, there are two categories of techniques in improving model interpretabil-
ity. Some efforts have been paid to build more transparent models, and we are able
to grasp how the models (or parts of the models) work. We call this direction as

7 Interpretability in Graph Neural Networks 125

x0

f’
f

feature 2

feature 1

(a)

1

2

3

4

5

feed-forward connection weights

1

2

3

4

5

relevance propagation

(b)
elephant elephant

(c)

object color
object shape
background color
ground color…

…

(d) (e)

Fig. 7.2: Illustration of post-hoc interpretation methods. (a): Local approximation
based interpretation. (b): Layer-wise relevance propagation. (c): Explanation based
on perturbation. (d): Explaining the meaning of latent representation dimensions.
(e): Explaining the meaning of neurons in a convolutional neural network via input
generation.

interpretable modeling. Meanwhile, instead of elucidating the internal mechanisms
by which models work, some methods investigate post-hoc interpretation to pro-
vide explanations to models that are already built. In this part, we introduce the
techniques of the two categories. Some of the methods provide motivation for GNN
interpretation which will be introduced in later sections.

7.1.3.1 Post-Hoc Interpretation

The post-hoc interpretation has received a lot of interests in both research and real
applications. Flexibility is one of the advantages of post-hoc interpretation, as it put
less requirement on the model types or structures. In the following paragraphs, we
briefly introduce several commonly used methods. The illustration of the basic idea
behind each of these methods is shown in Fig. 7.2.

The first type of methods to be introduced is approximation-based methods.
Given a function f that is complex to understand and an input instance x⇤ 2 Rm, we
could approximate f with a simple and understandable surrogate function h (usually
chosen as a linear function) locally around x⇤. Here m is the number of features in
each instance. There are several ways to build h. A straightforward way is based on
the first-order Taylor expansion, where:

f (x) ⇡ h(x) = f (x⇤)+w> · (x�x⇤), (7.1)

where w 2 Rm tells how sensitive the output is to the input features. Typically, w
can be estimated with the gradient (Simonyan et al, 2013), so that w = —x f (x⇤).
When gradient information is not available, such as in tree-based models, we could

126 Ninghao Liu and Qizhang Feng and Xia Hu

build h through training (Ribeiro et al, 2016). The general idea is that a number of
training instances (xi, f (xi)), 1 i n are sampled around x⇤, i.e., kxi � x⇤k e .
The instances are then used to train h, so that h approximates f around x⇤.

Besides directly studying the sensitivity between input and output, there is an-
other type of method called layer-wise relevance propagation (LRP) (Bach et al,
2015). Specifically, LRP redistributes the activation score of output neuron to its
predecessor neurons, which iterates until reaching the input neurons. The redistri-
bution of scores is based on the connection weights between neurons in adjacent
layers. The share received by each input neuron is used as its contribution to the
output.

Another way to understand the importance of a feature xi is to answer questions
like “What would have happened to f , had xi not existed in input?”. If xi is important
for predicting f (x), then removing/weakening it will cause a significant drop in
prediction confidence. This type of method is called the perturbation method (Fong
and Vedaldi, 2017). One of the key challenges in designing perturbation methods is
how to guarantee the input after perturbation is still valid. For example, it is argued
that perturbation on word embedding vectors cannot explain deep language models,
because texts are discrete symbols, and it is hard to identify the meaning of perturbed
embeddings.

Different from the previous methods that focus on explaining prediction results,
there is another type of method that tries to understand how data is represented in-
side a model. We call it representation interpretation. There is no unified definition
for representation interpretation. The design of methods under this category is usu-
ally motivated by the nature of the problem or the properties of data. For example,
in natural language processing, it has been shown that a word embedding could be
understood as the composition of a number of basis word embeddings, where the
basis words constitute a dictionary (Mathew et al, 2020).

Besides understanding predictions and data representations, another interpreta-
tion scheme is to understand the role of model components. A well-known example
is to visualize the visual patterns that maximally activate the target neuron/layer in
a CNN model (Olah et al, 2018). In this way, we understand what kind of visual
signal is detected by the target component. The interpretation is usually obtained
through a generative process, so that the result is understandable to humans.

7.1.3.2 Interpretable Modeling

Interpretable modeling is achieved via incorporating interpretability directly into
the model structures or learning process. It is still an extremely challenging prob-
lem to develop models that are both transparent and could achieve state-of-the-art
performances. Many efforts have been paid to improve the intrinsic interpretability
of deep models. Some details are discussed as below.

A straightforward strategy is to rely on distillation. Specifically, we first build
a complex model (e.g., a deep model) to achieve good performance. Then, we use
another model, which is readily recognized as interpretable, to mimic the predictions

7 Interpretability in Graph Neural Networks 127

of the complex model. The pool of interpretable models includes linear models,
decision trees, rule-based models, etc. This strategy is also called mimic learning.
The interpretable model trained in this way tends to perform better than normal
training, and it is also much easier to understand than the complex model.

Attention models, originally introduced for machine translation tasks, have now
become enormously popular, partially due to their interpretation properties. The in-
tuition behind attention models can be explained using human biological systems,
where we tend to selectively focus on some parts of the input, while ignoring other
irrelevant parts (Xu et al, 2015). By examining attention scores, we could know
which features in the input have been used for making the prediction. This is also
similar to using post-hoc interpretation algorithms that find which input features are
important. The major difference is that attention scores are generated during model
prediction, while post-hoc interpretation is performed after prediction.

Deep models heavily rely on learning effective representations to compress in-
formation for downstream tasks. However, it is hard for humans to understand the
representations as the meanings of different dimensions are unknown. To tackle this
challenge, disentangled representation learning has been proposed. Disentangled
representation learning breaks down features of different meanings and encodes
them as separate dimensions in representations. As a result, we could check each
dimension to understand which factors of input data are encoded. For example, af-
ter learning disentangled representations on 3D-chair images, factors such as chair
leg style, width and azimuth, are separately encoded into different dimensions (Hig-
gins et al, 2017).

7.1.4 Opportunities and Challenges

Despite the major progress made in domains such as vision, language and control,
many defining characteristics of human intelligence remain out of reach for tradi-
tional deep models such as convolutional neural networks (CNNs), recurrent neural
networks (RNNs) and multi-layer perceptrons (MLPs). To look for new model ar-
chitectures, people believe that GNN architectures could lay the foundation for more
interpretable patterns of reasoning (Battaglia et al, 2018). In this part, we discuss the
advantages of GNNs and challenges to be tackled in terms of interpretability.

The GNN architecture is regarded as more interpretable because it facilitates
learning about entities, relations, and rules for composing them. First, entities are
discrete and usually represent high-level concepts or knowledge items, so it is re-
garded as easier for humans to understand than image pixels (tiny granularity) or
word embeddings (latent space vectors). Second, GNN inference propagates infor-
mation through links, so it is easier to find the explicit reasoning path or subgraph
that contributes to the prediction result. Therefore, there is a recent trend of trans-
forming images or text data into graphs, and then applying GNN models for predic-
tions. For example, to build a graph from an image, we can treat objects inside the
image (or different portions within an object) as nodes, and generate links based on

128 Ninghao Liu and Qizhang Feng and Xia Hu

the spatial relations between nodes. Similarly, a document can be transformed into a
graph by discovering concepts (e.g., nouns, named entities) as nodes and extracting
their relations as links through lexical parsing.

Although the graph data format lays a foundation for interpretable modeling,
there are still several challenges that undermine GNN interpretability. First, GNN
still maps nodes and links into embeddings. Therefore, similar to traditional deep
models, GNN also suffers from the opacity of information processing in intermedi-
ate layers. Second, different information propagation paths or subgraphs contribute
differently to the final prediction. GNN does not directly provide the most impor-
tant reasoning paths for its prediction, so post-hoc interpretation methods are still
needed. In the following sections, we will introduce the recent advances in tackling
the above challenges to improve the explainability and interpretability of GNNs.

7.2 Explanation Methods for Graph Neural Networks

In this section, we introduce the post-hoc explanation methods for understand-
ing GNN predictions. Similar to the categorization in Section 7.1.3, we include
approximation-based methods, relevance-propagation-based methods, perturbation-
based methods, and generative methods.

7.2.1 Background

Before introducing the techniques, we first provide the definition of graphs and re-
view the fundamental formulations of a GNN model.

Graphs: In the rest of the chapter, if not specified, the graphs we discuss are
limited to homogeneous graphs.

Definition 7.3. A homogeneous graph is defined as G = (V ,E), where V is the set
of nodes and E is the set of edges between nodes.

Furthermore, let A 2 Rn⇥n be the adjacency matrix of G , where n = |V |. For un-
weighted graphs, Ai, j is binary, where Ai, j = 1 means there exists an edge (i, j) 2 E ,
otherwise Ai, j = 0. For weighted graphs, each edge (i, j) is assigned a weight wi, j,
so Ai, j = wi, j. In some cases, nodes are associated with features, which could be
denoted as X 2 Rn⇥m, and Xi,: is the feature vector of node i. The number of fea-
tures for each node is m. In this chapter, unless otherwise stated, we focus on GNN
models on homogeneous graphs.

GNN Fundamentals: Traditional GNNs propagate information via the input
graph’s structure according to the propagation scheme:

Hl+1 = s(D̃� 1
2 ÃD̃� 1

2 HlW l), (7.2)

7 Interpretability in Graph Neural Networks 129

Important Edge

Important Node

Node Feature Vector

Important Feature

Computation graph of node 𝑖
(2 convolution layers)

𝑖

Fig. 7.3: Illustration of explanation result formats. Explanation results for graph
neural networks could be the important nodes, the important edges, the important
features, etc. An explanation method may return multiple types of results.

where Hl denotes the embedding matrix at layer l, and W l denotes the trainable
parameters at layer l. Also, Ã = A + I denotes the adjacency matrix of the graph
after adding the self-loop. The matrix D̃ is the diagonal degree matrix of Ã, i.e.,
D̃i,i = Â j Ãi, j. Therefore, D̃� 1

2 ÃD̃� 1
2 normalizes the adjacency matrix. If we only

focus on the embedding update of node i, the GCN propagation scheme could be
rewritten as:

Hl+1
i,: = s(Â

j2Vi[{i}

1
ci, j

Hl
j,:W

l), (7.3)

where Hj,: denotes the j-th row of matrix H, and Vi denotes the neighbors of node
i. Here ci, j is a normalization constant, and 1

ci, j
= (D̃� 1

2 ÃD̃� 1
2)i, j. Therefore, the

embedding of node i at layer l can be seen as aggregating neighbor embeddings
of nodes that are neighbors of node i, followed by some transformations. The em-
beddings in the first layer H0 is usually set as the node features. As the layer goes
deeper, the computation of each node’s embedding will include further nodes. For
example, in a 2-layer GNN, computing the embedding of node i will use the infor-
mation of nodes within the 2-hop neighborhood of node i. The subgraph composed
by these nodes is called the computation graph of node i, as shown in Fig. 7.3.

Target Models: There are two common tasks in graph analysis, i.e., graph-level
predictions and node-level predictions. We use classification tasks as the example. In
graph-level tasks, the model f (G) 2 RC produces a single prediction for the whole
graph, where C is the number of classes. The prediction score for class c could
be written as f c(G). In node-level tasks, the model f (G) 2 Rn⇥C returns a matrix,
where each row is the prediction for a node. Some explanation methods are designed
solely for graph-level tasks, some are for node-level tasks, while some could handle
both scenarios. The computation graphs introduced above are commonly used in
explaining node-level predictions.

130 Ninghao Liu and Qizhang Feng and Xia Hu

Raw Gradient
(SA)

Grad⊙Input

𝑥

𝑓𝑐

SmoothGrad

𝑥

𝑓𝑐

𝑥

𝑓𝑐

0

0

0

𝑆(𝑥)

𝑥

𝑓𝑐

0

IG
= 𝑆(𝑥)

Fig. 7.4: Illustration of several gradient-based explanation methods. Methods rely-
ing on local gradients may suffer from the saturation problem or noises in input,
where a feature’s local sensitivity is not consistent with its overall contribution.
SmoothGrad removes noises in an explanation by averaging multiple explanations
on nearby points. IG is more accurate than Grad � Input in measuring feature con-
tribution.

Interpretation Formats: According to the introduction above, there are several
input modes that could be included in the explanation as shown in Fig. 7.3. Specif-
ically, explanation methods could identify what are the important nodes, important
edges and important features that contribute most to the prediction. Some explana-
tion methods may identify multiple types of input modes simultaneously.

7.2.2 Approximation-Based Explanation

The approximation-based explanation has been widely used to analyze the predic-
tion of models with complex structures. Approximation-based approaches could be
further divided into white-box approximation and black-box approximation. The
white-box approximation uses information inside the model, which includes but is
not limited to gradients, intermediate features, model parameters, etc. The black-box
approximation does not utilize information propagation inside the model. It usually
uses a simple and interpretable model to fit the target model’s decision on an input
instance. Then, the explanation can be easily extracted from the simple model. The
details of commonly used methods for both categories are introduced as below.

7.2.2.1 White-Box Approximation Method

Sensitivity Analysis (SA) Baldassarre and Azizpour (2019) study the impact of a
particular change in an independent variable on a dependent variable. In the context
of explanation, the dependent variable refers to the prediction, while the independent

7 Interpretability in Graph Neural Networks 131

variables refer to the features. The local gradient of the model is commonly used as
sensitivity scores to represent the correlation between the feature and the prediction
result. The sensitivity score is defined as:

S (x) = k—x f (G)k2 , (7.4)

where G is the input instance graph to be explained, f (G) is the model prediction
function. Here x refers to the feature vector of a node of interest. Node features
with higher sensitivity scores are more important because they can lead to drastic
changes to model decisions.

Although SA is intuitive and straightforward, its effectiveness is still limited.
It assumes input features are mutually independent, and does not necessarily pay
attention to their correlations in the actual decision-making process. Also, sensitivity
analysis only measures the impact of local changes to the decision function f (G),
rather than thoroughly explaining the decision function value itself. Explanation
results provided by sensitivity analysis are usually relatively noisy and challenging
to comprehend. Therefore, some follow-up techniques have been developed trying
to overcome this limitation (as shown in Fig. 7.4).

GuidedBP(Baldassarre and Azizpour, 2019) is similar to SA except that it only
detects the features that positively activate the neurons, with the assumption that
negative gradients may confuse the contribution of important features and makes the
visualizing noisy. To follow this intuition, GuideBP modifies the process of back-
propagation of SA and discards all negative gradients.

Grad� Input Sanchez-Lengeling et al (2020) measures the feature contribution
scores as the element-wise product of the input features and the gradients of decision
function with respect to the features:

S (x) = —>
x f (G)�x. (7.5)

Therefore, Grad� Input considers not only the feature sensitivity, but also the scale
of feature values. However, the methods mentioned above all suffered from the sat-
uration problem, where the scope of the local gradients is too limited to reflect the
overall contribution of each feature.

Integrated Gradients (IG) Sanchez-Lengeling et al (2020) solve the saturation
problem by aggregating feature contribution along a designed path in input space.
This path starts from a chosen baseline point G 0 and ends at the target input G .
Specifically, the feature contribution is computed as:

S (x) =
�
x�x0�

Z 1

a=0
—x f

�
G 0 +a

�
G �G 0��da (7.6)

where x0 denotes a feature vector in the baseline point G 0, while x is a feature vector
in the original input G . The choice of baseline G 0 is relatively flexible. A typical
strategy is to use a null graph as the baseline, which has the same topology but its
nodes use “unspecified” categorical features. This is motivated by the application of

132 Ninghao Liu and Qizhang Feng and Xia Hu

IG in explaining image classification models (Sundararajan et al, 2017), where the
baseline is usually chosen as a pure black image or an image with random noises.

The explanations obtained by the above methods usually contain a lot of noises.
Therefore, Smilkov et al (2017) propose SmoothGrad to alleviate the problem.
SmoothGrad averages attributions evaluated on a number of noise-perturbed ver-
sions of the input. This method initially aims at sharpening the saliency maps on
images. Furthermore, Sanchez-Lengeling et al (2020) apply it to the Grad � Input
method by adding Gaussian noise to node and edge features, and averaging multiple
explanations to a smoothed one.

Class Activation Mapping (CAM) (Pope et al, 2019) is an explanation method
that is initially developed for CNNs. This method only works under a specific model
architecture, where the last convolutional layer is followed by a global average pool-
ing (GAP) layer before the final softmax layer. The feature maps (i.e., activations)
in the last convolutional layer are aggregated and re-scaled to the same size as the
input image, so that the activations highlight the important regions in the image. The
idea of CAM can also be adapted to graph neural networks. Specifically, the GAP
layer in a GNN could be defined as averaging the embeddings of all nodes in the last
graph convolution layer: h = 1

n Ân
i=1 HL

i,:, where L is the last graph convolution layer.
CAM treats each dimension of the final node embeddings (i.e., HL

:,k) as a feature
map. The logit value for class c is:

f c(G) = Â
k

wc
k hk (7.7)

where hk denotes the k-th entry of h, wc
k is the GAP-layer weight of k-th feature map

with respect to class c. Therefore, the contribution of node i to the prediction is:

S (i) =
1
n Â

k
wc

k HL
i,k. (7.8)

Although CAM is simple and efficient, it only works on models with certain struc-
tures, which greatly limits its application scenarios.

Grad-CAM (Pope et al, 2019) combines gradient information with feature maps
to relax the limitation of CAM. While CAM uses the GAP layer to estimate the
weight of each feature map, Grad-CAM employs the gradient of output with respect
to the feature maps to compute the weights, so that:

wc
k =

1
n

n

Â
i=1

∂ f c(G)

∂HL
i,k

, (7.9)

S (i) = ReLU

Â
k

wc
k HL

i,k

!
. (7.10)

The ReLU function forces the explanation to focus on the positive influence on the
class of interest. Grad-CAM is equivalent to CAM for GNNs with only one fully-
connected layer before output. Compared to CAM, Grad-CAM can be applied to

7 Interpretability in Graph Neural Networks 133

more GNN architectures, thus avoiding the trade-off between model explainability
and capacity.

7.2.2.2 Black-Box Approximation Methods

Different from white-box approximation methods, black-box approximation meth-
ods manage to bypass the need to obtain internal information of complex models.
The general idea is to use models that are intrinsically interpretable (such as linear
regressions, decision trees) to fit the complex model. Then, we can explain the de-
cision based on the simple models. The fundamental assumption behind this is that:
Given an input instance, the model’s decision boundary within the neighborhood
of that instance can be well approximated by the interpretable model. The major
challenge is how to define the neighborhood space given an input graph which is a
discrete data structure.

We introduce several approaches, including GraphLime (Huang et al, 2020c),
RelEx (Zhang et al, 2020a), and PGM-Explainer (Vu and Thai, 2020). These meth-
ods share a similar procedure: First, a neighborhood space is defined around the
target instance. Second, data points are sampled within this space and their predic-
tions are obtained after being fed into the target model. A training dataset is built,
where each instance-label pair consists of a sampled point and its prediction. Finally,
an interpretable model is trained by using the dataset. The key difference between
these methods lies in two aspects, i.e., the definition of the neighborhood, and the
choice of the interpretable model.

GraphLime is a local explanation method for GNN predictions on graph nodes.
Given the prediction result on a target node vt , GraphLime defines the neighborhood
space as a set of nodes which are in the k-hop neighborhood of the target node in
the input graph:

Vt = {v | distance(vt ,v) k,v 2 V } , (7.11)

where the k-hop neighborhood refers to the nodes which are within k hops from
the target node. GraphLime collects the features of nodes in Vt as the corpus, and
employs HSIC Lasso (Hilbert-Schmidt independence criterion Lasso) to measure
the independence between features and predictions of the nodes. The top impor-
tant features are selected as the explanation result, so GraphLime cannot provide
explanations based on structural information of the graph.

RelEx defines the neighborhood space as a set of perturbed graphs to the com-
putation graph of the target node. Similar to GraphLime, RelEx explains GNN pre-
dictions on nodes. The computation graph Gt of the target node vt is composed
of the k-hop neighbor nodes around node vt and the edges that connect them.
First, RelEx proposes a BFS sampling strategy to sample multiple perturbed graphs
{G 0

t,1,G
0

t,2, ...,G
0

t,I} from the computation graph. These perturbed graphs are fed into
the original GNN f to build a training set {G 0

t,i, f (G 0
t,i)}I

i=1. Then, a new GNN f 0 is
trained upon the training set to approximate f . After that, a mask M is trained for
explanation. The mask is applied to the adjacency matrix of Gt . The value of each

134 Ninghao Liu and Qizhang Feng and Xia Hu

mask entry is in [0,1], so it is a soft mask. There are two loss terms for training the
mask: (1) f 0(Gt �M) is close to f 0(Gt), (2) the mask M is sparse. The resultant mask
entry values indicate the importance score of edges in Gt , where a higher mask value
means the corresponding edge is more important.

PGM-Explainer applies probabilistic graphical models to explain GNNs. To
find the neighbor instances of the target, PGM-Explainer first randomly selects
nodes to be perturbed from computation graphs. Then, the selected nodes’ features
are set to the mean value among all nodes. After that, PGM-Explainer employs a
pair-wise dependence test to filter out unimportant samples, aiming at reducing the
computational complexity. Finally, a Bayesian network is introduced to fit the pre-
dictions of chosen samples. Therefore, the advantage of PGM-Explainer is that it
illustrates the dependency between features.

7.2.3 Relevance-Propagation Based Explanation

Relevance propagation redistributes the activation score of output neuron to its pre-
decessor neurons, iterating until reaching the input neurons. The core of relevance
propagation methods is about defining a rule for the activation redistribution be-
tween neurons. Relevance propagation has been widely used to explain models in
domains such as computer vision and natural language processing. Recently, some
work has been proposed to explore the possibility of revising relevance propagation
method for GNNs. Some representative approaches include LRP (Layer-wise Rel-
evance Propagation) (Baldassarre and Azizpour, 2019; Schwarzenberg et al, 2019),
GNN-LRP (Schnake et al, 2020), ExcitationBP (Pope et al, 2019).

LRP is first proposed in (Bach et al, 2015) to calculate the contribution of indi-
vidual pixels to the prediction result for an image classifier. The core idea of LRP is
to use back propagation to recursively propagate the relevance scores of high-level
neurons to low-level neurons, up to the input-level feature neurons. The relevance
score of the output neuron is set as the prediction score. The relevance score that
a neuron receives is proportional to its activation value, which follows the intu-
ition that neurons with higher activation tend to contribute more to the prediction.
In (Baldassarre and Azizpour, 2019; Schwarzenberg et al, 2019), the propagation
rule is defined as below:

Rl
i = Â

j

z+
i, j

Âk z+
k, j +b+

j + e
Rl+1

j

zi, j = xl
i wi, j

(7.12)

where Rl
i ,R

l+1
j is the relevance score of neuron i in layer l and neuron j in layer

l + 1, respectively. xl
i is the activation of neuron i in layer l. wi, j is the connection

weight. e prevents the denominator from being zero. This propagation rule only
allows positive activation values. Also, explanations obtained using this method are

7 Interpretability in Graph Neural Networks 135

limited to nodes and node features, where graph edges are excluded. The reason
is that the adjacency matrix is treated as part of the GNN model. Therefore, LRP
is unable to analyze topological information which nevertheless plays an important
role in graph data.

ExcitationBP is a top-down attention model originally developed for CNNs
(Zhang et al, 2018d). It shares a similar idea as LRP. However, ExcitationBP defines
the relevance score as a probability distribution and uses a conditional probability
model to describe the relevance propagation rule.

P(a j) = Â
i

P(a j | ai)P(ai) (7.13)

where a j is the j-th neuron in the lower layer and ai is the i-th parent neuron of
a j in the higher layer. When the propagation process passes through the activation
function, only non-negative weights are considered and negative weights are set to
zero. To extend ExcitationBP for graph data, new backward propagation schemes
are designed for the softmax classifier, the GAP (global average pooling) layer and
the graph convolutional operator.

GNN-LRP mitigates the weakness of traditional LRP by defining a new prop-
agation rule. Instead of using the adjacency matrix to obtain propagation paths,
GNN-LRP assigns the relevance score to a walk, which refers to a message flow
path in the graph. The relevance score is defined by the T -order Taylor expansion of
the model with respect to the incorporation operator (graph convolutional operator,
linear message function, etc.). The intuition is that the incorporation operator with
greater gradients has a greater influence on the final decision.

7.2.4 Perturbation-Based Approaches

An assumption behind prediction explanations is that important input parts signif-
icantly contribute to the output while unimportant parts have minor influences. It
thus implies that masking out the unimportant parts will have a negligible impact on
the output, and masking out the important parts will have a significant impact. The
goal is to find a mask M to indicate graph component importance. The mask could
be applied to nodes, edges or features in graphs. The mask value can either be binary
Mi 2 {0,1} or continuous Mi 2 [0,1]. Some recent perturbation-based approaches
are introduced as below.

GNNExplainer (Ying et al, 2019) is the first perturbation-based explanation
method for GNNs. Given the model’s prediction on a node v, GNNExplainer tries
to find a compact subgraph GS from the computation graph of node v that is most
crucial for the prediction. The problem is defined as maximizing the mutual in-
formation (MI) between the predictions of the original computation graph and the
predictions of the subgraph:

136 Ninghao Liu and Qizhang Feng and Xia Hu

max
GS

MI (Y,(GS,XS)) = H(Y)�H (Y | G = GS,X = XS) , (7.14)

where GS and XS is the subgraph and its nodes’ features. Y is the predicted label
distribution, and its entropy H(Y) is a constant. To solve the optimization problem
above, the authors apply a soft-mask M on adjacency matrix:

min
M

�
C

Â
c=1

1[y = c] logPF (Y = y | G = Ac �s(M),X = Xc) , (7.15)

where Ac is the adjacency matrix of the computation graph, Xc is the correspond-
ing feature matrix, and M denotes the trainable parameters. The sigmoid function
projects the mask value in [0,1]. Finally, a subgragh is built by selecting the edges
(and the nodes connected by these edges) corresponding to the high values in M. Be-
sides providing explanations based on graph structures, GNNExplainer could also
offer feature-wise explanations by applying a similar masking learning process on
features. Moreover, regularization techniques could be applied to enforce the expla-
nation to be sparse. As a model-agnostic approach, GNNExplainer is suitable for
any graph-based machine learning tasks and GNN models.

PGExplainer (Luo et al, 2020) shares the same idea with GNNExplainer and
learns a discrete mask applied on edges to explain the predictions. The main idea is
to use a deep neural network to generate edge mask values:

Mi, j = MLPY ([zi;z j]) , (7.16)

where Y denotes the trainable parameters of the MLP. zi and z j are the embedding
vector for node i and j, respectively. [·; ·] denotes concatenation. Similar to the GN-
NExplainer, the mask generator is trained by maximizing the mutual information
between the original prediction and the new prediction.

GraphMask (Schlichtkrull et al, 2021) also produces the explanation by estimat-
ing the influences of edges. Similar to PGExplainer, GraphMask learns an erasure
function that quantifies the importance of each edge. The erasure function is defined
as:

z(k)
u,v = gp

⇣
h(k)

u ,h(k)
v ,m(k)

u,v

⌘
(7.17)

where hu, hv and mu,v refers to the hidden embedding vectors for node u, node v and
the message sent through the edge in graph convolution. p denotes the parameters
of function g. One difference between GraphMask and PGExplainer is that the for-
mer also takes the edge embedding as input. Another difference is that GraphMask
provides the importance estimation for every graph convolution layer, and k indi-
cates the layer that the embedding vectors belong to. Instead of directly erasing the
influences of unimportant edges, the authors then propose to replace the message
sent through unimportant edges as:

m̃(k)
u,v = z(k)

u,v ·m(k)
u,v +

⇣
1� z(k)

u,v

⌘
·b(k), (7.18)

7 Interpretability in Graph Neural Networks 137

where b(k) is trainable. The work shows that a large proportion of edges can be
dropped without deteriorating the model performance.

Causal Screening (Wang et al, 2021) is a model-agnostic post-hoc method that
identifies a subgraph of input as an explanation from the cause-effect standpoint.
Causal Screening exerts causal effect of candidate subgraph as the metric:

S (Gk) = MI (do(G = Gk); ŷ)�MI(do(G = /0); ŷ) (7.19)

where Gk is the candidate subgraph, k is the number of edges and MI is the mu-
tual information. The intervention do(G = Gk) and do(G = /0) means the model
input receives treatment (feeding Gk into the model) and control (feeding /0 into the
model), respectively. ŷ denotes the prediction when feeding the original graph into
the model. Causal Screening uses a greedy algorithm to search for the explanation.
Starting from an empty set, at each step, it adds one edge with the highest causal
effect into the candidate subgraph.

CF-GNNExplainer (Lucic et al, 2021) also proposes to generate counterfactual
explanations for GNNs. Different from previous methods that try to find a sparse
subgraph to preserve the correct prediction, CF-GNNExplainer proposes to find the
minimal number edges to be removed such that the prediction changes. Similar to
GNNExplainer, CF-GNNExplainer employs the soft mask as well. Therefore, it also
suffers from the “introduced evidence” problem (Dabkowski and Gal, 2017), which
means that non-zero or non-one values may introduce unnecessary information or
noises, and thus influence the explanation result.

7.2.5 Generative Explanation

Many methods introduced in previous subsections define the explanation as select-
ing sub-graphs that contains part of nodes, edges or features of the original input.
Recently, XGNN (Yuan et al, 2020b) proposes to obtain explanation by generating
a graph that maximizes the prediction of the given GNN model. Some methods that
share a similar idea have been proposed for computer vision tasks. For example, the
role of a neuron could be understood by finding the input prototypes that maximally
activates the neuron’s activation (Olah et al, 2018). The problem of finding proto-
type samples can be defined as an optimization problem, which can be solved by
gradient ascent. However, this method can not be directly used on GNNs because
the gradient ascent method is not compatible with the discrete and topological na-
ture of graph data. To tackle this problem, XGNN defines graph generation as a
reinforcement learning task.

To be more specific, the generator follows the steps below. First, it randomly
picks one node as the initial graph. Second, given an intermediate graph, the gener-
ator adds a new edge to the graph. This action is carried out in two steps: choosing
the edge’s starting point as well as the end point. XGNN employs another GNN as
the policy to determine the action. The GNN learns nodes features, and two MLPs

138 Ninghao Liu and Qizhang Feng and Xia Hu

then take the learned features as input to predict the possibility of a start point and
an endpoint. The endpoint and the edge between the two points are added to update
the intermediate graph as an action. Finally, it calculates the reward of the action, so
that we can train the generator via policy gradient algorithms. The reward consists
of two terms. The first term is the score of the intermediate graph after feeding it to
the target GNN model. The second one is a regularization term that guarantees the
validity of the intermediate graph. The above steps are executed repeatedly until the
number of action steps reaches the predefined upper limit. As a generative explana-
tion method, XGNN provides a holistic explanation for graph classification. There
could be more generative explanation methods for other graph analysis tasks to be
explored in the future.

7.3 Interpretable Modeling on Graph Neural Networks

Following the introduction in Section 7.1.3.2, we introduce two categories of in-
terpretable modeling approaches, i.e., GNN models with attention mechanism and
disentangled representation learning on graphs.

7.3.1 GNN-Based Attention Models

Attention mechanisms benefit model interpretability by highlighting relevant parts
of the graph for the given task through attention scores. According to the graph
types, we introduce attention models built upon homogeneous graphs and heteroge-
neous graphs, respectively.

7.3.1.1 Attention Models for Homogeneous Graphs

Graph Attention Networks (GATs) enable assigning different weights to different
node embeddings in a neighborhood when aggregating information (Veličković
et al, 2018). Specifically, let hi denote the column-wise embedding of node i, then
the embedding update is written as:

hi
l+1 = s(Â

j2Vi[{i}
ai, jWh j

l), (7.20)

where ai, j is the attention score, and Vi denotes the set of neighbors of node i. Also,
GAT uses a shared parameter matrix W independent of the layer depth. The attention
score is computed as:

ai, j = softmax(ei, j) =
exp(ei, j)

Âk2Vi[{i} exp(ei,k)
, (7.21)

7 Interpretability in Graph Neural Networks 139

𝒉𝑙1 𝒉𝑙+11

𝒉𝑙2

𝒉𝑙3

𝒉𝑙4 𝒉𝑙5

𝛼11

concat/avg

𝒉𝑙
𝑗

𝑊𝒉𝑙
𝑗

𝛼𝑖𝑗

𝑾𝒉𝑙𝑖 𝑾𝒉𝑙
𝑗

𝒂

softmaxj

Fig. 7.5: Left: An illustration of graph convolution with single head attentions by
node 1 on its neighborhood. Middle: The linear transformation with a shared param-
eter matrix. Right: The attention mechanism employed in (Veličković et al, 2018).

where self-attention mechanism is applied,

ei, j = LeakyReLU(a>[Whi
lkWh j

l]), (7.22)

where k denotes vector concatenation. In general, the attention mechanism can also
be denoted as ei, j = attn(hi

l ,h
j
l). Therefore, the attention mechanism is a single-

layer neural network parameterized by a weight vector a. The attention score ai, j
shows the importance of node j to node i.

The above mechanism could also be extended with multi-head attention. Specif-
ically, K independent attention mechanisms are executed in parallel, and the results
are concatenated:

hi
l+1 = kK

k=1 s(Â
j2Vi[{i}

ak
i, jW

kh j
l), (7.23)

where ak
i, j is the normalized attention score in the k-th attention mechanism, and W k

is the corresponding parameter matrix.
Besides learning node embeddings, we could also apply attention mechanisms to

learn a low-dimensional embedding for the whole graph (Ling et al, 2021). Suppose
we are working on an information retrieval problem. Given a set of graphs {Gm},
1 m M, and a query q, we want to return the graphs that are most relevant to the
query. The embedding of each graph Gm with respect to q could be computed using
the attention mechanism. In the first step, we could apply normal GNN propagation
rules as introduced in Equation 7.2, to obtain the embeddings of nodes inside each
graph. Let q denote the embedding of the query, and hi,m denote the embedding of
node i in a graph Gm. The embedding of graph Gm with respect to the query can be
computed as:

hq
Gm

=
1

|Gm|

|Gm|

Â
i=1

ai,qhi,m (7.24)

where ai,q = attn(hi,m,q) is the attention score, and attn() is a certain attention func-
tion. Finally, hq

Gm
can be used to compute the similarity of Gm to the query in the

graph retrieval task.

140 Ninghao Liu and Qizhang Feng and Xia Hu

7.3.1.2 Attention Models for Heterogeneous Graphs

A heterogeneous network is a network with multiple types of nodes, links, and even
attributes. The structural heterogeneity and rich semantic information bring chal-
lenges for designing graph neural networks to fuse information.

Definition 7.4. A heterogeneous graph is defined as G = (V ,E ,f ,y), where V is
the set of node objects and E is the set of edges. Each node v 2 V is associated with
a node type f(v), and each edge (i, j) 2 E is associated with an edge type y((i, j)).

We introduce how the challenge in embedding could be tackled using Heteroge-
neous graph Attention Network (HAN) (Wang et al, 2019m). Different from tradi-
tional GNNs, information propagation on HAN is conducted based on meta-paths.

Definition 7.5. A meta-path F is defined as a path with the form vi1
r1�! vi2

r2�!
· · · rl�1��! vil , abbreviated as vi1vi2 · · ·vil with a composite relation r1 � r2 � · · ·� rl�1.
To learn the embedding of node i, we propagate the embeddings from its neighbors
within the meta-path. The set of neighbor nodes is denoted as V F

i . Considering
that different types of nodes have different feature spaces, a node embedding is first
projected to the same space h j 0 = Mfih j. Here Mfi is the transformation matrix for
node type fi. The attention mechanism in HAN is similar to GAT, except that we
need to consider the type of meta-path that is currently sampled. Specifically,

zi,F = s(Â
j2V F

i

aF
i, j h j 0), (7.25)

where the normalized attention score is

aF
i, j = softmax(eF

i, j) = softmax(attn(hi0,h j 0;F)). (7.26)

Given a set of meta-paths {F1, ...,FP}, we can obtain a group of node embeddings
denoted as {zi,F1 , ...,zi,FP}. To fuse embeddings across different meta-paths, an-
other attention algorithm is applied. The fused embedding is computed as:

zi =
P

Â
p=1

bFp zi,Fp , (7.27)

where the normalized attention score is

bFp = softmax(wFp) = softmax(
1

|V | Â
i2V

q> ·MLP(zi,Fp)), (7.28)

where q is a learnable semantic vector. MLP(·) denotes a one-layer MLP module.
wFp can be explained as the importance of the meta-path Fp. Besides modeling
heterogeneous types of nodes and edges, HetGNN (Zhang et al, 2019b) extends
the discussion by considering heterogeneity in node attributes (e.g., images, texts,
categorical features).

7 Interpretability in Graph Neural Networks 141

is interested in

as a young father

jobenjoys vacation

Node: Person

Fig. 7.6: Using multiple embeddings to represent the interests of a user. Each em-
bedding segment corresponds to one aspect in data (Liu et al, 2019a).

7.3.2 Disentangled Representation Learning on Graphs

Traditional representation learning is limited in interpretability due to the opacity
of the representation space. Different from manual feature engineering where the
meaning of each resultant feature dimension is specified, the meaning of each di-
mension of the representation space is unknown. Representation learning on graphs
also suffers from this limitation. To tackle this issue, several approaches have been
proposed to enable assigning concrete meanings to different representation dimen-
sions, thus improving the interpretability of representation learning on graphs.

7.3.2.1 Is A Single Vector Enough?

Many existing representation learning methods on graphs focus on learning a sin-
gle embedding for each node. However, for those scenarios where some nodes have
multiple facets, is a single vector enough to represent each node? Solving such a
problem is of great practical value for applications such as recommender systems,
where users could have multiple interests. In this case, we could use multiple em-
beddings to represent each user, and each embedding corresponds to one interest.
An example is shown in Fig. 7.6. Specifically, if hi 2 RD denotes the embedding
of node i, then hi = [hi,1;hi,2; ...;hi,K], where hi,k 2 RD/K is the embedding for the
k-th facet. There are two challenges in learning disentangled representations, i.e.,
how to discover the K facets, and how to distinguish the update of different embed-
dings during the training process. The facets could be discovered in an unsupervised
manner by using clustering, where each cluster represents a facet. In the following
parts, we introduce several approaches for learning disentangled node embeddings
on graphs.

142 Ninghao Liu and Qizhang Feng and Xia Hu

Prediction Layer

Target node

Neighbor nodes

Clustering/Routing

Disentangled embedding

Fig. 7.7: The high-level idea of learning the disentangled node embedding for a
target node by using clustering or dynamic routing.

7.3.2.2 Prototypes-Based Soft-Cluster Assignment

We discuss the techniques in the context of recommender system design. Facets
that represent item types are discovered as we learn user and item embeddings.
Here we assume that each item only has one facet, while each user could still have
multiple facets. The embedding of item t is simply ht , while the embedding of
user u is hu = [hu,1;hu,2; ...;hu,K]. Each item t is associated with a one-hot vector
ct = [ct,1,ct,2, ...,ct,K], where ct,k = 1 if t belongs to facet k, and ct,k = 0 otherwise.
Besides node embeddings, we also need to learn a set of prototype embeddings
{mk}K

k=1. The one-hot vector is drawn from the categorical distribution as below:

ct ⇠ categorical(softmax([st,1,st,2, ..,st,K])), st,k = cos(ht ,mk)/t, (7.29)

where t is a hyper-parameter that scales the cosine similarity. Then, the probability
of observing an edge (u, t) is

p(t|u,ct) µ
K

Â
k=1

ct,k · similarity(ht ,hu,k). (7.30)

Besides the fundamental learning process introduced above, the variational autoen-
coder framework could also be applied to regularize the learning process (Ma et al,
2019c). The item embeddings and prototype embeddings are jointly updated until
convergence. The embedding of each user hu is determined by aggregating the em-
beddings of interacted items, where hu,k collects embeddings from items that also
belong to facet k. In the learning process, the cluster discovery, node-cluster assign-
ments, and embedding learning are jointly conducted.

7 Interpretability in Graph Neural Networks 143

7.3.2.3 Dynamic Routing Based Clustering

The idea of using dynamic routing for disentangled node representation learning is
motivated by the Capsule Network (Sabour et al, 2017). There are two layers of
capsules, i.e., low-level capsules and high-level capsules. Given a user u, the set of
items that he has interacted with is denoted as Vu. The set of low-level capsules
is {cl

i}, i 2 Vu, so each capsule is the embedding of an interacted item. The set of
high-level capsules is {ch

k}, 1 k K, where ch
k represents the user’s k-th interest.

The routing logit value bi,k between low-level capsule i and high-level capsule k
is computed as:

bi,k = (ch
k)

> Scl
i , (7.31)

where S is the bilinear mapping matrix. Then, the intermediate embedding for high-
level capsule k is computed as a weighted sum of low-level capsules,

zh
k = Â

i2Vu

wi,k Scl
i ,

wi,k =
exp(bi,k)

ÂK
k0=1 exp(bi,k0)

(7.32)

so wi,k can be seen as the attention weights connecting the two capsules. Finally, a
“squash” function is applied to obtain the embedding of high-level capsules:

ch
k = squash(zh

k) =
kzh

kk2

1+kzh
kk2

zh
k

kzh
kk2 . (7.33)

The above steps constitute one iteration of dynamic routing. The routing process is
usually repeated for several iterations to converge. When the routing finishes, the
high-level capsules can be used to represent the user u with multiple interests, to be
fed into subsequent network modules for inference (Li et al, 2019b), as shown in
Fig. 7.7.

7.4 Evaluation of Graph Neural Networks Explanations

In this section, we introduce the setting for evaluating GNN explanations. This in-
cludes the datasets that are commonly used for constructing and explaining GNNs,
as well as the metrics that evaluate different aspects of explanations.

7.4.1 Benchmark Datasets

As more approaches have been proposed for explaining GNNs, a variety of datasets
have been used to assess their effectiveness. As such a research direction is still

144 Ninghao Liu and Qizhang Feng and Xia Hu

in the initial stage of development, a universally accepted benchmark dataset, such
as the COCO dataset for image object detection, has not yet been proposed. Here
we list a number of datasets that have been used for developing GNN explanation
approaches, including synthetic datasets and real-world datasets.

7.4.1.1 Synthetic Datasets

It is difficult to evaluate explanations because there are no ground truths in datasets
to compare with. A strategy to mitigate this problem is to use synthetic datasets.
In this case, motifs designed by humans could be added to data to play the role as
ground truths, and these motifs are assumed to be relevant to the learning task. Some
synthetic graph datasets are listed as below.

• BA-Shapes (Ying et al, 2019): A Barabási-Albert graph with 300 nodes, to
which 80 house-shaped motifs are attached randomly. It is then further aug-
mented by adding 10% random edges.

• BA-Community (Ying et al, 2019): A graph consists of two BA-Shapes, with
node features in different BA-Shapes following different normal distributions
to distinguish them.

• Tree-Cycle (Ying et al, 2019): A graph based on an eight-level balance tree, to
which 80 hexagonal motifs are attached randomly to the tree.

• Tree-Grid (Ying et al, 2019): A graph similar to Tree-Cycle, but with 80 3-by-3
grid motifs instead of the hexagonal motifs.

• Noisy BA-Community, Noisy Tree-Cycle, Noisy Tree-Grid (Lin et al, 2020a):
These four datasets are obtained by adding 40 important and 10 unimportant
node features to the corresponding datasets list above. This design can help to
test a method’s ability to identify important node features.

• BA-2Motifs (Luo et al, 2020): A dataset contains 800 independent graphs that
are obtained by adding either a pentagon motif or a house motif to the base BA
graph. This dataset is designed for graph classification task while previous ones
are for node classification task.

7.4.1.2 Real-World Datasets

Some examples of real-world graph datasets are listed as below.

• MUTAG (Debnath et al, 1991): A dataset consisting of 4,337 molecule graphs
that are labeled mutagenic or non-mutagenic. The nodes and edges in a graph
represent the atoms and chemical bonds. Related studies have shown that
molecules with carbon rings and Nitro group (NO2) may lead to mutagenic
effects. Also, there are several other molecule datasets, such as BBBP, BACE
and TOX21 (Pope et al, 2019).

• REDDIT-BINARY (Yanardag and Vishwanathan, 2015): A online-discussion
interaction dataset. It contains 2,000 graphs, and each of them is labeled as a

7 Interpretability in Graph Neural Networks 145

question-answer based or a discussion based community. The nodes and edges
represent the users and their interactions, respectively.

• Delaney Solubility (Delaney, 2004): A molecule dataset with 1,127 molecule
graphs, and their labels are the water-octanol partition coefficient. This dataset
is usually for graph regression tasks.

• Bitcoin-Alpha, Bitcoin-OTC (Kumar et al, 2016): Two trust-weighted signed
networks. Each of them consists of a graph whose nodes are accounts trading on
the Bitcoin-Alpha or Bitcoin-OTC platform. The nodes are labeled trustworthy
or not according to other members’ ratings.

• MNIST SuperPixel-Graph (Dwivedi et al, 2020): An image dataset in the
form of graphs. Each sample is a graph converted from the corresponding image
in the MNIST dataset. Every node is a super-pixel that represents the intensity
of corresponding region.

7.4.2 Evaluation Metrics

An appropriate evaluation metric is crucial for methods comparison. Explanation
visualization such as heat-map, due to its intuitiveness, has been widely used in
explanation for image and text data. However, it loses this advantage since graph
data is not intuitive to understand. Only experts with the domain knowledge can
make judgment. In this section, we introduce several commonly-used metrics.

• Accuracy is only appropriate for datasets with ground truth. The synthetic
datasets usually contain the ground truth that is defined by the rule they are con-
structed. For example, in molecule datasets, the molecule with NO2 and carbon
ring is mutagenic. Considering that carbon ring also occurs in non-mutagenic
molecule, the NO2 group is considered as ground truth. F1 score and ROC-AUC
are commonly used accuracy metrics. The limitation of the accuracy metrics is
that it is unknown whether the GNN model makes predictions in the same way
as humans (i.e., whether the pre-defined ground truth is really valid).

• Fidelity (Pope et al, 2019) follows the intuition that removing the truly im-
portant features will significantly decrease the model performance. Formally,
fidelity is defined as:

f idelity =
1
N

N

Â
i=1

�
f yi (Gi)� f yi

�
Gi \G 0

i
��

(7.34)

where f is the output function target model. Gi is the i-th graph, G 0
i is the ex-

planation for it, and Gi \ G 0
i represents the perturbed i-th graph in which the

identified explanation is removed.
• Contrastivity (Pope et al, 2019) uses Hamming distance to measure the dif-

ferences between two explanations. These two explanations correspond to the
model’s prediction of one instance for different classes. It is assumed that mod-
els would highlight different features when making predictions for different

146 Ninghao Liu and Qizhang Feng and Xia Hu

classes. The higher the contrastivity, the better the performance of the inter-
preter.

• Sparsity (Pope et al, 2019) is calculated as the ratio of explanation graph size
to input graph size. In some cases, explanations are encouraged to be sparse,
because a good explanation should include only the essential features as far as
possible and discard the irrelevant ones.

• Stability (Sanchez-Lengeling et al, 2020) measures the performance gap of the
interpreter before and after adding noise to the explanation. It suggests that a
good explanation should be robust to slight changes in the input that do not
affect the model’s prediction.

7.5 Future Directions

Interpretation on graph neural networks is an emerging domain. There are still many
challenges to be tackled. In this section, we list several future directions towards
improving the interpretability of graph neural networks.

First, some online applications require real-time responses from models and al-
gorithms. It thus puts forward high requirements on the efficiency of explanation
methods. However, many GNN explanation methods conduct sampling or highly
iterative algorithms to obtain the results, which is time-consuming. Therefore, one
future research direction is how to develop more efficient explanation algorithms
without significantly sacrificing explanation precision.

Second, although more and more methods have been developed for interpreting
GNN models, how to utilize interpretation towards identifying GNN model defects
and improving model properties is still rarely discussed in existing work. Will GNN
models be largely affected by adversarial attacks or backdoor attacks? Can interpre-
tation help us to tackle these issues? How to improve GNN models if they have been
found to be biased or untrustworthy?

Third, besides attention methods and disentangled representation learning, are
there other modeling or training paradigms that could also improve GNN inter-
pretability? In the interpretable machine learning domain, some researchers are in-
terested in providing causal relations between variables, while some others prefer
using logic rules for reasoning. Therefore, how to bring causality into GNN learn-
ing, or how to use incorporate logic reasoning into GNN inference, may be an inter-
esting direction to explore.

Fourth, most existing efforts on interpretable machine learning have been de-
voted to get more accurate interpretation, while the human experience aspect is usu-
ally overlooked. For end-users, friendly interpretation can promote user experience,
and gain their trust to the system. For domain experts without machine learning
background, an intuitive interface helps integrate them into the system improvement
loop. Therefore, another possible direction is how to incorporate human-computer
interaction (HCI) to show explanation in a more user-friendly format, or how to de-
sign better human-computer interfaces to facilitate user interactions with the model.

7 Interpretability in Graph Neural Networks 147

Acknowledgements The work is, in part, supported by NSF (#IIS-1900990, #IIS-1718840, #IIS-
1750074). The views and conclusions contained in this paper are those of the authors and should
not be interpreted as representing any funding agencies.

Editor’s Notes: Similar to the general trend in the machine learning do-
main, explainability has been ever more widely recognized as an important
metric for graph neural networks in addition to those well recognized be-
fore such as effectiveness (Chapter 4), complexity (Chapter 5), efficiency
(Chapter 6), and robustness (Chapter 8). Explainability can not only broadly
influence technique development (e.g., Chapters 9-18) by informing model
developers of useful model details, but also could benefit domain experts in
various application domains (e.g., Chapters 19-27) by providing them with
explanations of predictions.

