
Chapter 5
The Expressive Power of Graph Neural
Networks

Pan Li and Jure Leskovec

Abstract The success of neural networks is based on their strong expressive power
that allows them to approximate complex non-linear mappings from features to
predictions. Since the universal approximation theorem by (Cybenko, 1989), many
studies have proved that feed-forward neural networks can approximate any func-
tion of interest. However, these results have not been applied to graph neural net-
works (GNNs) due to the inductive bias imposed by additional constraints on the
GNN parameter space. New theoretical studies are needed to better understand these
constraints and characterize the expressive power of GNNs.
In this chapter, we will review the recent progress on the expressive power of GNNs
in graph representation learning. We will start by introducing the most widely-used
GNN framework— message passing— and analyze its power and limitations. We
will next introduce some recently proposed techniques to overcome these limita-
tions, such as injecting random attributes, injecting deterministic distance attributes,
and building higher-order GNNs. We will present the key insights of these tech-
niques and highlight their advantages and disadvantages.

5.1 Introduction

Machine learning problems can be abstracted as learning a mapping f ⇤ from some
feature space to some target space. The solution to this problem is typically given
by a model fq that intends to approximate f ⇤ via optimizing some parameter q .
In practice, the ground truth f ⇤ is a priori typically unknown. Therefore, one may
expect the model fq to approximate a rather broad range of f ⇤. An estimate of

Pan Li
Department of Computer Science, Purdue University, e-mail: panli@purdue.edu

Jure Leskovec
Department of Computer Science, Stanford University, e-mail: jure@cs.stanford.edu

63

panli@purdue.edu
jure@cs.stanford.edu

64 Pan Li and Jure Leskovec

how broad such a range could be, called the model’s expressive power, provides an
important measure of the model potential. It is desirable to have models with a more
expressive power that may learn more complex mapping functions.

Neural networks (NNs) are well known for their great expressive power. Specifi-
cally, Cybenko (1989) first proved that any continuous function defined over a com-
pact space could be uniformly approximated by neural networks with sigmoid acti-
vation functions and only one hidden layer. Later, this result got generalized to any
squashing activation functions by (Hornik et al, 1989).

Ne
ura

l ne
two

rks

Traditional
machine learning:

SVM, GBDT

Fig. 5.1: Amount of Data vs. Perfor-
mance of different models.

However, these seminal findings are in-
sufficient to explain the current unprece-
dented success of NNs in practice because
their strong expressive power only demon-
strates that the model fq is able to approx-
imate f ⇤ but does not guarantee that the
model obtained via training f̂ indeed ap-
proximates f ⇤. Fig. 5.1 illustrates a well-
known curve of Amount of Data vs. Per-
formance of machine learning models (Ng,
2011). NN-based methods may only out-
perform traditional methods given suffi-
cient data. One important reason is that
NNs as machine learning models are still
governed by the fundamental tradeoff be-
tween the data amount and model complex-
ity (Fig. 5.2). Although NNs could be rather expressive, they are likely to overfit the
training examples when paired with more parameters. Therefore, it is necessary for
practice to build NNs that can maintain strong expressive power while constraints
are imposed on their parameters. At the same time, a good theoretical understanding
of the expressive power of NNs with constraints on their parameters is needed.

Model complexity

Optimal model
complexity

Testing error

Training error

Naively improving the expressive power
by increasing model complexity

Improving the expressive power by
injecting inductive bias into the model
while keeping model complexity

Without inductive bias
With inductive bias

Fig. 5.2: Training and testing errors with and without inductive bias can dramatically
affect the expressive power of models.

In practice, constraints on parameters are typically obtained from our prior
knowledge of the data; these are referred to as inductive biases. Some significant

5 The Expressive Power of Graph Neural Networks 65

…

Translation invariance

Translation variance

…

…

RNNs/CNNs share parameters

RNNs/CNNs do not fit this case…
…

Features
Targets

Features
Targets

Fig. 5.3: Illustration of 1-dimensional translation invariance/variance. RNNs/CNNs
use translation invariance to share parameters.

results about the expressive power of NNs with inductive bias have been shown
recently. Yarotsky (2017); Liang and Srikant (2017) have proved that deep neural
networks (DNNs), by stacking multiple hidden layers, can achieve good enough
approximation with significantly fewer parameters than shallow NNs. The archi-
tecture of DNNs leverages the fact that data has typically a hierarchical structure.
DNNs are agnostic to the type of data, while dedicated neural network architec-
tures have been developed to support specific types of data. Recurrent neural net-
works (RNNs) (Hochreiter and Schmidhuber, 1997) or convolution neural networks
(CNNs) (LeCun et al, 1989) were proposed to process time series and images, re-
spectively. In these two types of data, effective patterns typically hold translation
invariance in time and in space, respectively. To match this invariance, RNNs and
CNNs adopt the inductive bias that their parameters have shared across time and
space (Fig. 5.3). The parameter-sharing mechanism works as a constraint on the
parameters and limits the expressive power of RNNs and CNNs. However, RNNs
and CNNs have been shown to have sufficient expressive power to learn transla-
tion invariant functions (Siegelmann and Sontag, 1995; Cohen and Shashua, 2016;
Khrulkov et al, 2018), which leads to the great practical success of RNNs and CNNs
in processing time series and images.

Recently, many studies have focused on a new type of NNs, termed graph neu-
ral networks (GNNs) (Scarselli et al, 2008; Bruna et al, 2014; Kipf and Welling,
2017a; Bronstein et al, 2017; Gilmer et al, 2017; Hamilton et al, 2017b; Battaglia
et al, 2018). These aim to capture the inductive bias of graphs/networks, another
important type of data. Graphs are commonly used to model complex relations and
interactions between multiple elements and have been widely used in machine learn-
ing applications, such as community detection, recommendation systems, molecule
property prediction, and medicine design (Fortunato, 2010; Fouss et al, 2007; Pires
et al, 2015). Compared to time series and images, which are well-structured and rep-
resented by tables or grids, graphs are irregular and thus introduce new challenges.
A fundamental assumption behind machine learning on graphs is that the targets
for prediction should be invariant to the order of nodes of the graph. To match this
assumption, GNNs hold a general inductive bias termed permutation invariance. In
particular, the output given by GNNs should be independent of how the node indices
of a graph are assigned and thus in which order are they processed. GNNs require

66 Pan Li and Jure Leskovec

Feathers

Targets

Permutation Invariance GNNs are built to match
permutation invariance

GNN GNN=

Fig. 5.4: This illustrates how GNNs are designed to maintain permutation invari-
ance.

their parameters to be independent from the node ordering and are shared across the
entire graph (Fig. 5.4). Because of this new parameter sharing mechanism in GNNs,
new theoretical tools are needed to characterize their expressive power.

Analyzing the expressive power of GNNs is challenging, as this problem is
closely related to some long-standing problems in graph theory. To understand this
connection, consider the following example of how a GNN would predict whether a
graph structure corresponds to a valid molecule. The GNN should be able to identify
whether this graph structure is the same, similar, or very different from the graph
structures that are known to correspond to valid molecules. Measuring whether two
graphs have the same structure involves addressing the graph isomorphism prob-
lem, in which no P solutions have yet been found (Helfgott et al, 2017). In addition,
measuring whether two graphs have a similar structure requires contending with the
graph edit distance problem, which is even harder to address than the graph isomor-
phism problem (Lewis et al, 1983).

Great progress has been made recently on characterizing the expressive power of
GNNs, especially on how to match their power with traditional graph algorithms and
how to build more powerful GNNs that overcome the limitation of those algorithms.
We will delve more into these recent efforts further along in this chapter. In par-
ticular, compared to previous introductions (Hamilton, 2020; Sato, 2020), we will
focus on recent key insights and techniques that yield more powerful GNNs. Specifi-
cally, we will introduce standard message-passing GNNs that are able to achieve the
limit of the 1-dimensional Weisfeiler-Lehman test (Weisfeiler and Leman, 1968), a
widely-used algorithm to test for graph isomorphism. We will also discuss a number
of strategies to overcome the limitations of the Weisfeiler-Lehman test — including
attaching random attributes, attaching deterministic distance attributes, and leverag-
ing higher-order structures.

In Section 5.2, we will formulate the graph representation learning problems that
GNNs target. In Section 5.3, we will review the most widely used GNN frame-
work, the message passing neural network, describing the limitations of its expres-
sive power and discussing its efficient implementations. In Section 5.4, we will in-
troduce a number of methods that make GNNs more powerful than the message
passing neural network. In Section 5.5, we will conclude this chapter by discussing
further research directions.

5 The Expressive Power of Graph Neural Networks 67

ℳ -- the space of mappings
that fit the observed examples

" #
$

ℱ′
$∗ ($′

)ℱ′

ℱ′)ℱ
$∗

ℱ

ℱ′)ℱ
$∗

ℱ
($

Observed examples

$∗-- the precise mapping function
($′ -- the learnt model via NNs

ℱ′ -- the space of all
potential mappings
)ℱ′ -- the space of mappings

that may represented by NNs

(a) (b)

ℱ -- the space of all
potential mappings that satisfy
permutation invariance

)ℱ -- the space of mappings
that may represented by GNNs

(c) (d) ($ -- the learnt model via GNNs

ℳ

ℳ

Fig. 5.5: An illustration of the expressive power of NNs and GNNs and their affects
on the performance of learned models. a) Machine learning problems aim to learn
the mapping from the feature space to the target space based on several observed
examples. b) The expressive power of NNs refers to the gap between the two spaces
F and F̂ 0. Although NNs are expressive (F̂ 0 is dense in F), the learned model
f 0 based on NNs may differ significantly from f ⇤ due to their overfit of the limited
observed data. c) Suppose f ⇤ is known to be permutation invariant, as it works on
graph-structured data. Then, the space of potential mapping functions is reduced
from F 0 to a much smaller space F that only includes permutation invariant func-
tions. If we adopt GNNs, the space of mapping functions that can be approximated
simultaneously reduces to F̂ . The gap between F and F̂ characterizes the ex-
pressive power of GNNs. d) Although GNNs are less expressive than general NNs
(F̂ ⇢ F̂ 0), the learned model based on GNNs f is a much better approximator of
f ⇤ as opposed to the one based on NNs f̂ 0. Therefore, for graph-structured data, our
understanding of the expressive power of GNNs, i.e., the gap between F and F̂ , is
much more relevant than that of NNs.

5.2 Graph Representation Learning and Problem Formulation

In this section, we will set up the formal definition of graph representation learning
problems, their fundamental assumption, and their inductive bias. We will also dis-
cuss relationships between different notions of graph representation learning prob-
lems frequently studied in recent literature.

First, we will start by defining graph-structured data.

Definition 5.1. (Graph-structured data) Let G = (V ,E ,X) denote an attributed
graph, where V is the node set, E is the edge set, and X 2 R|V |⇥F are the node
attributes. Each row of X , Xv 2 RF refers to the attributes on the node v 2 V . In
practice, graphs are usually sparse, i.e., |E |⌧ |V |2. We introduce A 2 {0,1}|V |⇥|V |

to denote the adjacency matrix of G such that Auv = 1 iff (u,v) 2 E. Combining the

68 Pan Li and Jure Leskovec

𝑓 𝒢, 𝑆 should capture the
informative fingerprint of the
graph 𝒢 to represent S for certain
applications (characterized by a
ground-truth mapping 𝑓∗ 𝒢, 𝑆 .

𝒢

𝑆

𝒢

𝑆

𝒢

𝑆
Node classification… Graph classification…

Link prediction…

Fig. 5.6: Graph representation learning problems frequently discussed in literature.

adjacency matrix and node attributes, we may also denote G = (A,X). Moreover, if
G is unattributed with no node attributes, we can assume that all elements in X are
constant. Later, we also use V [G] to denote the entire node set of a particular graph
G .

The goal of graph representation learning is to learn a model by taking graph-
structured data as input and then mapping it so that certain prediction targets are
matched. Different graph representation learning problems may apply to a varying
number of nodes in a graph. For example, for node classification, a prediction is
made for each node, for each link/relation prediction on a pair of nodes, and for
each graph classification or graph property prediction on the entire node set V . We
can unify all these problems as graph representation learning.

Definition 5.2. (Graph representation learning) The feature space is defined as
X := G ⇥S , where G is the space of graph-structured data and S includes all
the node subsets of interest, given a graph G 2 G . Then, a point in X can be de-
noted as (G ,S), where S is a subset of nodes that are in G . Later, we call (G ,S) as
a graph representation learning (GRL) example. Each GRL example (G ,S) 2X is
associated with a target y in the target space Y . Suppose the ground-truth associa-
tion function between features and targets is denoted by f ⇤ : X !Y , f ⇤(G ,S) = y.
Given a set of training examples X = {(G (i),S(i),y(i))}k

i=1 and a set of testing exam-
ples Y = {(G̃ (i), S̃(i), ỹ(i))}k

i=1, a graph representation learning problem is to learn
a function f based on X such that f is close to f ⇤ on Y .

The above definition is general in the sense that in a GRL example (G ,S)2X , G
provides both raw and structural features on which some prediction for a node subset
S of interest is to be made. Below, we will further list a few frequently-investigated
learning problems that may be formulated as graph representation learning prob-
lems.

Remark 5.1. (Graph classification problem / Graph-level prediction) The node set S
of interest is the entire node set V [G] by default. The space of graph-structured data

5 The Expressive Power of Graph Neural Networks 69

G typically contains multiple graphs. The target space Y contains labels of different
graphs. Later, for graph-level prediction, we will use G to denote a GRL example
instead of (G ,S) for notational simplicity.

Remark 5.2. (Node classification problem / Node-level prediction) In a GRL exam-
ple (G ,S), the S corresponds to one single node of interest. The corresponding G
can be defined in different ways. On the one hand, only the nodes close to S provide
effective features. In this case, G may be set as the induced local subgraph around
S. Different G ’s for different S’s may come from a single graph. On the other hand,
two nodes that are far apart on one graph still hold mutual impact and can be used
as a feature to make a prediction on another graph. In that case, G needs to include
a large portion of a graph or even the entire graph.

Remark 5.3. (Link prediction problem / Node-pair-level prediction) In a GRL ex-
ample (G ,S), S corresponds to a pair of nodes of interest. Similar to the node classi-
fication problem, G for each example may be an induced subgraph around S or the
entire graph. The target space Y contains 0-1 labels that indicate whether there is a
probable link between two nodes. Y may also be generalized to include labels that
reflect the types of links to be predicted.

Next, we will introduce the fundamental assumption used in most graph repre-
sentation learning problems.

Definition 5.3. (Isomorphism) Consider two GRL examples (G (1),S(1)), (G (2),S(2))
2X . Suppose G (1) = (A(1),X (1)) and G (2) = (A(2),X (2)). If there exists a bijective
mapping p : V [G (1)]! V [G (2)], i 2 {1,2}, such that A(1)

uv = A(2)
p(u)p(v), X (1)

u = X (2)
p(u)

and p also gives a bijective mapping between S(1) and S(2), we call that (G (1),S(1))
and (G (2),S(2)) are isomorphic, denoted as (G (1),S(1))⇠= (G (2),S(2)). When the par-

ticular bijective mapping p should be highlighted, we use notation (G (1),S(1))
p⇠=

(G (2),S(2)). If there is no such a p , we call that they are non-isomorphic, denoted as
(G (1),S(1)) 6⇠= (G (2),S(2)).

Assumption 1 (Fundamental assumption in graph representation learning) Con-
sider a graph representation learning problem with a feature space X and its cor-
responding target space Y . Pick any two GRL examples (G (1),S(1)), (G (2),S(2)) 2
X . The fundamental assumption says that if (G (1),S(1))⇠= (G (2),S(2)), their corre-
sponding targets in Y are the same.

Due to this fundamental assumption, it is natural to introduce the corresponding
permutation invariance as inductive bias that all models of graph representation
learning should satisfy.

Definition 5.4. (Permutation invariance) A model f satisfies permutation invari-
ance if for any (G (1),S(1))⇠= (G (2),S(2)), f (G (1),S(1)) = f (G (2),S(2)).

Now we may define the expressive power of a model for graph representation
learning problems.

70 Pan Li and Jure Leskovec

Definition 5.5. (Expressive power) Consider a feature space X of a graph rep-
resentation learning problem and a model f defined on X . Define another space
X (f) as a subspace of the quotient space X / ⇠= such that for two GRL exam-
ples (G (1),S(1)), (G (2),S(2)) 2X (f), f (G (1),S(1)) 6= f (G (2),S(2)). Then, the size
of X (f) characterizes the expressive power of f . For two models, f (1) and f (2), if
X (f (1))�X (f (2)), we say that f (1) is more expressive than f (2).

Remark 5.4. Note that the expressive power in Def. 5.5, characterized by how a
model can distinguish non-isomorphic GRL examples, does not exactly match the
traditional expressive power used for NNs in the sense of functional approxima-
tion. Actually, Def. 5.5 is strictly weaker because distinguishing any non-isomorphic
GRL examples does not necessarily indicate that we can approximate any function
f ⇤ defined over X . However, if a model f cannot distinguish two non-isomorphic
features, f is definitely unable to approximate function f ⇤ that maps these two ex-
amples to two different targets. Some recent studies have been able to prove some
equivalence between distinguishing non-isomorphic features and permutation in-
variant function approximations under weak assumptions and applying involved
techniques (Chen et al, 2019f; Azizian and Lelarge, 2020). Interested readers may
check these references for more details.

It is trivial to provide the expressive power of a model f for graph representa-
tion learning if f does not satisfy permutation invariance. Without such a constraint,
NNs can approximate all continuous functions (Cybenko, 1989), which include the
continuous functions that distinguish any non-isomorphic GRL examples. There-
fore, the key question we are to discuss in the chapter is: “How to build the most
expressive permutation invariant models, GNNs in particular, for graph representa-
tion learning problems?”

5.3 The Power of Message Passing Graph Neural Networks

5.3.1 Preliminaries: Neural Networks for Sets

We will start by reviewing the NNs with sets (multisets) as their input,since a set
can be viewed as a simplified-version of a graph where all edges are removed. By
definition, the order of elements of a set does not impact the output; models that
encode sets naturally provide an important building block for encoding the graphs.
We term this approach invariant pooling.

Definition 5.6. (Multiset) A multiset is a set where its elements can be repetitive,
meaning that they are present multiple times. In this chapter, we assume by default
that all the sets are multisets and thus allow repetitive elements. In situations where
this is not the case, we will indicate otherwise.

5 The Expressive Power of Graph Neural Networks 71

Definition 5.7. (Invariant pooling) Given a multiset of vectors S = {a1,a2, ...,ak}
where ai 2 RF and F is an arbitrary constant, an invariant pooling refers to a map-
ping, denoted as q(S), that is invariant to the order of elements in S.

Some widely-used invariant pooling operations include: sum pooling q(S) =
Âk

i=1 ai, mean pooling q(S) = 1
k Âk

i=1 ai and max pooling [q(S)] j = maxi2[1,F]{ai j}
for all j 2 [1,F]. Zaheer et al (2017) show that any invariant poolings of a set S can
be approximated by q(S) = f(Âk

i=1 y(ai)), where f and y are functions that may be
approximated by fully connected NNs, provided that ai, i 2 [k] comes from a count-
able universe. This statement can be generalized to the case where S is a multiset
(Xu et al, 2019d).

5.3.2 Message Passing Graph Neural Networks

Message passing is the most widely-used framework to build GNNs (Gilmer et al,
2017). Given a graph G = (V ,E ,X), the message passing framework encodes each
node v 2 V with a vector representation hv and keeps updating this node represen-
tation by iteratively collecting representations of its neighbors and applying neural
network layers to perform a non-linear transformation of those collections:

1. Initialize node vector representations as node attributes: h(0)
v Xv,8v 2 V .

2. Update each node representation based on message passing over the graph
structure. In l-th layer, l = 1,2, ...,L, perform the following steps:

Message: m(l)
vu MSG(h(l�1)

v ,h(l�1)
u), 8(u,v) 2 E , (5.1)

Aggregation: a(l)
v AGG({m(l)

vu |u 2Nv}), 8v 2 V , (5.2)

Update: h(l)
v UPT(h(l�1)

v ,a(l)
v), 8v 2 V . (5.3)

where Nv is the set of neighbors of v.

A

C B

E

F

D A

B EC

A
C F A B D A

F

ℎ
(ଵ)

ℎ
(ଶ)

ℎ
()

ℎ
()

ℎி
()

MP-GNN to learn the node embedding of the node A:

…

𝑈𝑃𝑇(…)

𝐴𝐺𝐺(…)

One neural layer

ℎ
(ଶ)

𝑀𝑆𝐺(…)

Fig. 5.7: The computing flow of MP-
GNN to obtain a node representation.

The operations MSG, AGG, and UPT
can be implemented via neural networks.
Typically, MSG is implemented by a feed-
forward NN, e.g., MSG(p,q) = s(pW1 +
qW2), where W1 and W2 are learnable
weights, and s(·) is an element-wise non-
linear activation. UPT can be chosen in a
similar way as MSG. AGG differs as its in-
put is a multiset of vectors and thus the or-
der of these vectors should not affect the
output. AGG is typically implemented as an
invariant pooling (Def. 5.7). Each layer k
can have different parameters from other layers. We will denote the GNNs that fol-
low this message passing framework as MP-GNN.

72 Pan Li and Jure Leskovec

MP-GNN produces representations of all the nodes, {h(L)
v |v 2 V}. Each node

representation is essentially determined by a subtree rooted at this node (Fig. 5.7).
Given a specific graph representation learning problem, for example, classifying a
set of nodes S ✓ V , we may use the representations of relevant nodes in S to make
the prediction:

ŷS = READOUT({h(L)
v |v 2 S}). (5.4)

where the READOUT operation is often implemented via another invariant pooling
when |S| > 1 plus a feed-forward NN to predict the target. Combining Eqs.equation 11.45-
equation 5.4, MP-GNN builds a GNN model for graph representation learning:

ŷS = fMP�GNN(G ,S). (5.5)

We can show the permutation invariance of MP-GNN by induction over the iter-
ation index l.

Theorem 5.1. (Invariance of MP-GNN) fMP�GNN(·, ·) satisfies permutation invari-
ance (Def. 5.4) as long as the AGG and READOUT operations are invariant pooling
operations (Def. 5.7).

Proof. This can be proved trivially by induction.

MP-GNN by default leverages the inductive bias that the nodes in the graph di-
rectly affect each other only via their connected edges. The mutual effect between
nodes that are not connected by an edge can be captured via paths that connect
these nodes via message passing. Indeed, such inductive bias may not match the
assumptions in a specific application, and MP-GNN may find it hard to capture mu-
tual effect between two far-away nodes. However, the message-passing framework
has several benefits for model implementation and practical deployment. First, it
directly works on the original graph structure and no pre-processing is needed. Sec-
ond, graphs in practice are typically sparse (|E |⌧ |V |2) and thus MP-GNN is able
to scale to very large but sparse graphs. Third, each of the three operations MSG,
AGG, and UPT can be computed in parallel across all nodes and edges, which is
beneficial for parallel computing platforms such as GPUs and map-reduce systems.

Because it is natural and easy to be implemented in practice, most GNN architec-
tures essentially follow the MP-GNN framework by adopting specific MSG, AGG,
and UPT operations. Representative approaches include InteractionNet (Battaglia
et al, 2016), structure2vec (Dai et al, 2016), GCN (Kipf and Welling, 2017a), Graph-
SAGE (Hamilton et al, 2017b), GAT (Veličković et al, 2018), GIN (Xu et al, 2019d),
and many others (Kearnes et al, 2016; Zhang et al, 2018g).

5.3.3 The Expressive Power of MP-GNN

In this section, we will introduce the expressive power of MP-GNN , following the
results proposed in Xu et al (2019d); Morris et al (2019).

5 The Expressive Power of Graph Neural Networks 73

The 1-dimensional Weisfeiler-Lehman test to distinguish (G (1),S(1)) and (G (2),S(2)):

1. Assume each node v in V [G (i)] is initialized with a color C(i,0)
v X (i)

v for i = 1,2. If X (i)
v

is a vector, then an injective function is used to map it to a color.
2. For l = 1,2, ..., do

Update node colors: C(i,l)
v HASH(C(i,l�1)

v ,{C(i,l�1)
u |u 2N (i)

v }), i 2 {1,2}
(5.6)

where the HASH operation can be viewed as an injective mapping where different tuples
(C(i,l�1)

v ,{C(i,l�1)
u |u 2N (i)

v }) are mapped to different labels.

Test: If two multisets {C(1,l)
v |v 2 S(1)} and {C(2,l)

v |v 2 S(2)} are not equal,

then return (G (1),S(1)) 6⇠= (G (2),S(2)); else, go back to equation 5.6.

If 1-WL test returns (G (1),S(1)) 6⇠= (G (2),S(2)), we know that (G (1),S(1)) (G (2),S(2)) are not
isomorphic. However, for some non-isomorphic (G (1),S(1)) (G (2),S(2)), the 1-WL test may
not return (G (1),S(1)) 6⇠= (G (2),S(2)) (even with infinitely many iterations). In this case, the 1-
WL test fails to distinguish them. Note that the 1-WL test was originally proposed to test the
isomorphism of two entire graphs, i.e.,, S(i) = V [G (i)] for i 2 {1,2} (Weisfeiler and Leman,
1968). Here the 1-WL test is further generalized to test the case where S(i) ⇢ V (i), to match
the general graph representation learning problems.

The expressive power we defined (Def. 5.5) is closely related to the graph iso-
morphism problem. This problem is challenging, as no polynomial-time algorithms
have been found for it (Garey, 1979; Garey and Johnson, 2002; Babai, 2016). De-
spite some corner cases (Cai et al, 1992), the Weisfeiler-Lehman (WL) tests of graph
isomorphism (Weisfeiler and Leman, 1968) are a family of effective and computa-
tionally efficient tests that distinguish a broad class of graphs (Babai and Kucera,
1979). Its 1-dimensional form (the 1-WL test), “naive vertex refinement”, is analo-
gous to the neighborhood aggregation in MP-GNN .

They are comparing MP-GNN with the 1-WL test, the node-representation up-
dating procedure Eqs.equation 11.45-equation 5.3 can be viewed as an implemen-
tation of Eq.equation 5.6 and the READOUT operation in Eq.equation 5.4 can
be viewed as a summary of all node representations. Although MP-GNN was
not proposed to perform graph isomorphism testing, the fMP�GNN can be used
for this test: if fMP�GNN(G (1),S(1)) 6= fMP�GNN(G (2),S(2)), then we know that
(G (1),S(1)) 6⇠= (G (2),S(2)). Because of this analogy, the expressive power of MP-
GNN can be measured by the 1-WL test. Formally, we conclude the argument in the
following theorem.

Theorem 5.2. (Lemma 2 in (Xu et al, 2019d), Theorem 1 in (Morris et al, 2019))
Consider two non-isomorphic GRL examples (G (1),S(1)) and (G (2),S(2)). If
fMP�GNN(G (1),S(1)) 6= fMP�GNN(G (2),S(2)), then the 1-WL test also decides
(G (1),S(1)) and (G (2),S(2)) are not isomorphic.

Theorem 5.2 indicates that MP-GNN is at most as powerful as the 1-WL test
in distinguishing different graph-structured features. Here, the 1-WL test is consid-
ered an upper bound (instead of being equal to the expressive power of MP-GNN)

74 Pan Li and Jure Leskovec

88

Step 1: Each node is initialized with
some color according to its attribute
(if no attributes, use the same color).

D

A

C B

E

F

D

A

C B

E

F

The mapping “attributes → colors” is injective.

21

Step 2: Each node will collect the colors
from their neighbors:

Node A: (p,{bby})
Left node E: (b,{py});
Right node E: (b,{pyg}) …

A

C B

E

F

D

A

C B

E

F

D

The mapping “(self-color, set of colors from neighbors) → a new color” is injective

After each iteration , check the set of node colors. Current both graphs have the same set of colors.
We do step 2 again. After two iterations, we may distinguish these two graphs because left B will
get a color that will not appear in the right graph, because currently left B has purple + blue in its
neighborhood while no nodes in the right graph have such neighborhood.

Fig. 5.8: An illustration of steps that distinguish two graphs via the 1-dimensional
Weisfeiler-Lehman test. MP-GNN follows a similar procedure and may also distin-
guish them.

because the updating procedure which aggregates node colors from its neighbors
(Eq.equation 5.6) is injective and can distinguish between the different aggregations
of node colors. This intuition is useful later to design MP-GNN that matches this
upper bound.

Now that the upper bound of the representation power of MP-GNN has been
established, a natural follow-up question is whether there are existing GNNs that
are, in principle, as powerful as the 1-WL test. The answer is yes. As shown by
Theorem 5.3: if the message passing operation (compositing Eqs.equation 11.45-
equation 5.3 together) and the final READOUT (Eq.equation 5.4) are both injective,
then the resulting MP-GNN is as powerful as the 1-WL test.

Theorem 5.3. (Theorem 3 in (Xu et al, 2019d)) After sufficient iterations, MP-GNN
may map any GRL examples (G (1),S(1)) and (G (2),S(2)), that the 1-WL test decides
as non-isomorphic, to different representations if the following two conditions hold:

a) The composition of MSE, AGG and UPT (Eqs.equation 11.45-equation 5.3)
constructs an injective mapping from (h(k�1)

v ,{h(k�1)
u |u 2Nv}) to h(k)

v .
b) The READOUT (Eq.equation 5.4) is injective.

Although MP-GNN does not surpass the representation power of the 1-WL test,
MP-GNN has important benefits over the 1-WL test from the perspective of ma-
chine learning: node colors and the final decision given by the 1-WL test are dis-
crete (represented as node colors or a “yes/no” decision) and thus cannot capture the
similarity between graph structures. In contrast, a MP-GNN satisfying the criteria in

5 The Expressive Power of Graph Neural Networks 75

Theorem 5.3 generalizes the 1-WL test by learning to represent the graph structures
with vectors in a continuous space. This enables MP-GNN to not only discrimi-
nate between different structures but also to learn to map similar graph structures
to similar representations, thus capturing dependencies between graph structures.
Such learned representations are particularly helpful for generalizations where data
contains noisy edges and the exact matching graph structures are sparse (Yanardag
and Vishwanathan, 2015).

In the next subsection, we will focus on introducing the key design ideas behind
MP-GNN that satisfies the conditions in Theorem 5.3.

5.3.4 MP-GNN with the Power of the 1-WL Test

Xu et al (2019d) introduced the key guidelines to satisfy the conditions in Theo-
rem 5.3. First, to model injective multiset functions for the neighbor aggregation,
the AGG operation (Eq.equation 15.16) is suggested to adopt the sum pooling op-
eration, which is proved to universally represent functions defined over multisets
whose elements are from a countable space (Lemma 5.1).

Lemma 5.1. (Lemma 4 in (Xu et al, 2019d)) Suppose S is a countable universe
of elements. Then there exists a function q : S ! Rn such that q(S) = Âx2S y(x) is
unique for each finite multiset S⇢S , where y individually encodes each element in
S . Moreover, any multiset function g can be decomposed as g(S) = f (Âx2S y(x))
for some function f .

Remark 5.5. Note that the sum pooling operator is crucial, as some popular invari-
ant pooling operators, such as the mean pooling operator, are not injective multiset
functions. The significance of the sum pooling operation is to record the number
of repetitive elements in a multiset. The mean pooling operation adopted by graph
convolutional network (Kipf and Welling, 2017a) or the softmax-normalization (at-
tention) pooling adopted by graph attention network (Veličković et al, 2018) may
learn the distribution of the elements in a multiset but not the precise counts of the
elements.

Thanks to the universal approximation theorem (Hornik et al, 1989), we can use
multi-layer perceptrons (MLPs) to model and learn y and f in Lemma 5.1 for uni-
versally injective AGG operation. In MP-GNN, we do not even need to explicitly
model y and f as the MSG and UPT operations — (Eqs.equation 11.45 and equa-
tion 5.3) respectfully — have already been implemented via MLPs. Therefore, using
the sum pooling as the AGG operation is sufficient to achieve the most expressive
MP-GNN:

76 Pan Li and Jure Leskovec

Expressive Message: m(k)
vu MLP(k�1)

1 (h(k�1)
v �h(k�1)

u), 8(u,v) 2 E ,

Expressive Aggregation: a(k)
v Â

u2Nv

m(k)
vu , 8v 2 V ,

Expressive Update: h(k)
v MLP(k�1)

2 (h(k�1)
v �a(k)

v), 8v 2 V .

where � denotes concatenation. Actually, we can even simplify the procedure by
using a single MLP. We can also set m(k)

vu ! h(k�1)
u , 8(u,v) 2 E without decreasing

the expressive power. Combining all the terms together, Xu et al (2019d) obtains
the simplest update mechanism of node representations that constructs an injective
mapping from (h(k�1)

v ,{h(k)
u |u 2Nv}) to h(k)

v :

h(k)
v MLP(k�1)((1+ e(k))h(k�1)

v + Â
u2Nv

h(k�1)
u), 8v 2 V , (5.7)

where e(k) is a learnable weight. This updating method, by using a NN-based lan-
guage, is termed the graph isomorphism network (GIN) layer (Xu et al, 2019d).

Lemma 5.2 formally states that MP-GNN that adopts Eq.equation 5.7 may match
the condition a) in Theorem 5.3.

Lemma 5.2. Updating node representations by following Eq.equation 5.7 con-
structs an injective mapping from (h(k�1)

v ,{h(k)
u |u 2 Nv}) to h(k)

v , if the node at-
tributes X are from a countable space.

Proof. Combine the proof for injectiveness of the sum aggregation with the univer-
sal approximation property of MLP (Hornik et al, 1989).

A similar idea may be adapted to the READOUT operation (Eq.5.4), which also
requires an injective mapping of multisets:

Expressive Inference: ŷS = MLP(Â
v2S

h(L)
v). (5.8)

Xu et al (2019d) has observed that node representations from earlier iterations may
sometimes generalize better and thus also suggests using the READOUT (a counter-
part to Eq.5.4) from the Jumping Knowledge Network (JK-Net) (Xu et al, 2018a),
though it is not necessary from the perspective of the representation power of MP-
GNN .

Overall, combining the update Eq.equation 5.7 and the READOUT Eq.equation 5.8,
we may achieve an MP-GNN that is as powerful as the 1-WL test. In the next sec-
tion, we introduce several techniques that allow MP-GNN to break the limitation of
the 1-WL test and achieve even stronger expressive power.

5 The Expressive Power of Graph Neural Networks 77

5.4 Graph Neural Networks Architectures that are more
Powerful than 1-WL Test

In the previous section, we characterized the representation power of MP-GNN that
is bounded by the 1-WL test. In other words, if the 1-WL test cannot distinguish two
GRL examples (G (1),S(1)) and (G (2),S(2)), then MP-GNN cannot distinguish them
either. Although the 1-WL test cannot distinguish only a few corner graph structures,
it indeed limits the applicability of GNNs in many real-world applications (You et al,
2019; Chen et al, 2020q; Ying et al, 2020b). In this section, we will introduce several
approaches to overcome the above limitation of MP-GNN.

5.4.1 Limitations of MP-GNN

First, we will review several critical limitations of MP-GNN and the 1-WL test to
gain the intuition for understanding the techniques that build more powerful GNNs.
MP-GNN iteratively updates the representation of each node by aggregating repre-
sentations of its neighbors. The obtained node representation essentially encodes the
subtree rooted at Node v (Fig. 5.7). However, using this rooted subtree to represent
a node may lose useful information, such as:

1. The information about the distance between multiple nodes is lost. For example,
You et al (2019) noticed that MP-GNN has limited power in capturing the po-
sition/location of a given node with respect to another node in the graph. Many
nodes may share similar subtrees, and thus, MP-GNN produces the same rep-
resentation for them although the nodes may be located at different locations in
the graph. This location information of nodes is crucial for the tasks that depend
on multiple nodes, such as link prediction (Liben-Nowell and Kleinberg, 2007),
as two nodes that tend to be connected with a link are typically located close to
each other. An illustrative example is shown in Fig. 5.9.

2. The information about cycles is lost. Particularly, when expanding the subtree of
a node, MP-GNN essentially losses track of the node identities in the subtrees.
An illustrative example is shown in Fig. 5.10. The information about cycles
is crucial in applications such as subgraph matching (Ying et al, 2020b) and
counting (Liu et al, 2020e) because loops frequently appear in the queried sub-
graph patterns of a subgraph matching/counting problem. Chen et al (2020q)
formally proved that MP-GNN is able to count star structures (a particular form
of trees) but cannot count connected subgraphs with three or more nodes that
form cycles.

Theoretically, there is a general class of graph representation learning problems
that MP-GNN will fail to solve due to its limited representation. To show this, we
define a class of graphs, termed attributed regular graphs.

78 Pan Li and Jure Leskovec

? ?
Query: Which one is more
likely the predator of
Pelagic Fish, Lynx or Orca?

Fig. 5.9: A foodweb network example that demonstrates limitations of MP-GNN
(Srinivasan and Ribeiro, 2020a). MP-GNN will associate Lynx and Orca with the
same node representations, i.e., h(i)

Lynx = h(i)
Orca, as these two nodes hold the same

rooted subtree. Note that we do not consider node features. Thus, MP-GNN cannot
predict whether Lynx or Orca is more likely to be the predator of Pelagic Fish (a
link prediction task).

v u

𝐺(ଵ) 𝐺(ଶ)

v.s.

Corresponding subtrees:

=
v u

Fig. 5.10: The node representations h(L)
v and h(L)

u given by MP-GNN are the same,
although they belong to different cycles – 3-cycle and 6-cycle, respectively.

Definition 5.8. (Attributed regular graphs) Consider an attributed graph G = (V ,E ,X).
All nodes in V are partitioned according to their attributes V = [k

i=1Vi, such that
two nodes from the same category Vi have the same attributes, while two nodes
from different categories have different attributes. If for any two categories, Vi, Vj,
i, j 2 [k], for any two nodes u,v 2 Vi, the number of neighbors of u in Vj and the
number of neighbors of v in Vj are equal, this graph can also be termed attributed
regular graph. Denote Ci as the attribute of nodes in Vi. Also, denote the number
of neighbors in Vj of a node v 2 Vi as ri j. Then, the configuration of this attributed
regular graph can be represented as a set of tuples Config(G) = {(Ci,Cj,ri j)}i, j2[k].

Note that the definition of attributed regular graphs is similar to k-partite regular
graphs, while attributed regular graphs allow edges connecting nodes from the same
partition. It can be shown that the 1-WL test will color all the nodes of one partition
in the same way. Based on the bound of representation power of MP-GNN (Theo-
rem 5.2), we can obtain the following corollary about the impossibility of MP-GNN
to distinguish GRL examples defined on attributed regular graphs. Fig. 5.11 gives
some examples that illustrate the impossibility. Actually, with sufficient layers (it-
erations), MP-GNN (the 1-WL test) will always transform any attributed graph into

5 The Expressive Power of Graph Neural Networks 79
regular graphs attributed regular graphs

!(#)

%(&) %(#) %(&)%(#)

!(&) !(#) !(&)

MP-GNN and the 1-WL test may not distinguish ! # , % # , ! & , % & .Fig. 5.11: A pair of attributed regular graphs G (1), G (2) with the same configuration
and a proper selection of S(1), S(2) : MP-GNN and the 1-WL test fail to distinguish
(G (1),S(1)), (G (2),S(2)).

an attributed regular graph (Arvind et al, 2019) if we view the node representations
obtained by MP-GNN as the node attributes on this transformed graph 1.

Corollary 5.1. Consider two graph-structured features (G (1),S(1)), (G (2),S(2)). If
two attributed regular graphs G (1), G (2) share the same configuration, i.e., Config(G (1)) =

Config(G (2)), and two multisets of attributes {X (1)
v |v2 S(1)} and {X (2)

v |v2 S(2)} are
also equal, then fMP�GNN(G (1),S(1)) = fMP�GNN(G (2),S(2)). Therefore, if graph
representation learning problems associate {X (1)

v |v2 S(1)} and {X (2)
v |v2 S(2)} with

different targets, MP-GNN does not hold the expressive power to distinguish them
and predict their correct targets.

Proof. The proof is obtained by tracking each iteration of the 1-WL test and per-
forming an induction.

Next, we will introduce several approaches that address the above limitations and
that further improve the expressive power of MP-GNN .

5.4.2 Injecting Random Attributes

The main reason for limitations on the expressive power of MP-GNN is that MP-
GNN does not track node identities; however, different nodes with the same at-
tributes will be initialized with the same vector representations. This condition will
be maintained unless their neighbors propagate different node representations. One
way to improve the expressive power of MP-GNN is to inject each node with a
unique attribute. Given a GRL example (G ,S), where G = (A,X),

gI(G ,S) = (GI ,S), where GI = (A,X� I), (5.9)

where � is concatenation and I is an identity matrix, this gives each node a unique
one-hot encoding and yields a new attributed graph GI . The composite model

1 Most transformed graphs have one single node per partition. In this case, two graphs that share
the same configuration are isomorphic.

80 Pan Li and Jure Leskovec

fMP�GNN �gI increases expressive power as node identities are attached to the mes-
sages in the message passing framework and the distance and loop information can
be learnt with sufficient iterations of message propagation.

However, the limitation of the above framework is that it is not permutation in-
variant (Def.5.4): given that two isomorphic GRL examples (G (1),S(1))⇠= (G (2),S(2)),
gI(G (1),S(1)) and gI(G (2),S(2)) may be not isomorphic any more. Then, the com-
posite model fMP�GNN � gI(G (1),S(1)) may not equal fMP�GNN � gI(G (2),S(2)). As
the obtained model loses the fundamental inductive bias of graph representation
learning, it is hard to be generalized2.

Remark 5.6. Some other approaches may share the same limitation with gI , e.g.,
using the adjacency matrix A (each row of A representing node attributes). However,
Srinivasan and Ribeiro (2020a) argued that node embeddings obtained via matrix
factorization, such as deepwalk (Perozzi et al, 2014) and node2vec (Grover and
Leskovec, 2016), can keep the required invariance and thus are still generalizable.
We will return to this concept in Sec.5.4.2.4.

To overcome the above limitation, different methods have been proposed re-
cently. These models share the following strategy: they first design some additional
random node attributes Z, use them to argue the original dataset, and then learn a
GNN model over the augmented dataset (Fig. 5.13).

The obtained models will be more expressive, as the random node attributes can
be viewed as unique node identities that distinguish nodes. However, if the model
is only trained based on a single GRL example augmented by these random at-
tributes, it cannot keep invariance as discussed above. Instead, the model needs
to be trained over multiple GRL examples augmented by independently injected
random attributes. The new augmented GRL examples have the same target as the
original GRL examples from which they are generated. This training of models over
augmented examples essentially regularizes the permutation variance of the models
and makes them behave almost “permutation invariant.”

Different methods to inject these random attributes may be adopted, but a direct
way is to attach Z to X , i.e., given a graph-structured data (G ,S), where G = (A,X),

gZ(G ,S) = (GZ ,S), where GZ = (A, X̃Z) and X̃Z X�Z. (5.10)

Note that for each realization Z, the composite model fMP�GNN � gZ is not permu-
tation invariant. Instead, all these approaches make E[fMP�GNN � gZ] permutation
invariant and expect the models to keep invariant in expectation. To match such
invariance in expectation, an approach must satisfy the following proposition.

Proposition 5.1. The following two properties are needed to build a model by in-
jecting random features Z.

2 Recent literature often states that the composite model is not inductive. Inductiveness and gen-
eralization to unobserved examples are related. In the transductive setting, fMP�GNN � gI is less
generalizable than fMP�GNN , although the prediction performance of fMP�GNN �gI may be some-
times better than fMP�GNN due to the much stronger expressive power of fMP�GNN �gI .

5 The Expressive Power of Graph Neural Networks 81

1
0
0
0
,
0
1
0
0
,
0
0
1
0
,
0
0
0
1

1
1
0
0
,
0
1
0
1
,
0
1
1
0
,
0
0
0
1
, …

⊕

⊕
⊕

⊕

~ ℙ
Types of random attributes Positional information Model & reference

Random permutations No RP-GNN (Murphy et al, 2019)

(Almost uniform) Discrete r.v. No rGIN (Sato et al, 2020)

Distances to random anchor sets Yes PGNN (You et al, 2019)

Graph-convoluted Gaussian r.v. Yes CGNN (Srinivasan & Ribeiro, 2020)

Random signed Laplacian eigenmap Yes LE-GNN (Dwivedi et al, 2020)

random
attributes

original attributes

Fig. 5.12: Injecting random node attributes can improve the expressive power of
GNNs. Different types of random node attributes are adopted in different works.
Some random node attributes contain node positional information (the position of a
node with respect to other nodes in the graph).

1. A sufficient number of Z’s should be sampled during the training stage so that
the model indeed captures permutation invariance in expectation.

2. The randomness in Z should be agnostic to the original node identities.

To satisfy the property 1, a method suggests that for each forward pass to com-
pute fMP�GNN � gZ during the training stage, one Z should be re-sampled once or
multiple times to get enough data argumentation. To satisfy the property 2, four
different types of random Z have been proposed as described next.

5.4.2.1 Relational Pooling - GNN (RP-GNN) (Murphy et al, 2019a)

Murphy et al (2019a) considered randomly assigning an order of nodes as their extra
attributes and proposed the model relational pooling GNN (RP-GNN). We use ZRP
to denote additional node attributes Z used in RP-GNN. Suppose the graph G has
n nodes, ZRP is uniformly sampled from all possible permutation matrices. That
is, randomly pick a bijective mapping (permutation) p : V (G)!V (G), and design
permutation matrix [ZRP]i j = 1 if j = p(i) and [ZRP]i j = 0 otherwise. Then, RP-GNN
adopts the composite model,

fRP�GNN = E[fMP�GNN �gZRP]. (5.11)

Theorem 5.4. (Theorem 2.2 (Murphy et al, 2019a)) The RP-GNN fRP�GNN is
strictly more powerful than the original fMP�GNN.

Computing the expectation E[fMP�GNN �gZRP] is intractable as one needs to com-
pute fMP�GNN �gZRP for all possible permutations p : V (G)!V (G). To overcome
this problem, sampling of ZRP may be needed.

However, as the entire permutation space is too large, uniformly random sam-
pling of a limited number of ZRP may introduce a large variance. To reduce the
potential variance, Murphy et al (2019a) also proposed to sample all p’s that per-
mute only a small subset of nodes instead of the entire set of nodes. More recently,
Chen et al (2020q) further adapted RP-GNN to solve the subgraph counting prob-

82 Pan Li and Jure Leskovec

lem. They suggest to use all p’s that permute all the nodes of each connected local
subgraph.

5.4.2.2 Random Graph Isomorphic Network (rGIN) (Sato et al, 2021)

Sato et al (2021) generalized RP-GNN by setting the additional attributes of each
node sampled from an almost uniform discrete probability distribution. The key
difference from RP-GNN is that the additional attributes of two nodes are set to
be independent of each other (while in RP-GNN, one-time random attributes of
different nodes are correlated due to the nature of permutation). We use Zr to denote
Z used in rGIN and [Zr]v to denote the attributes of node v. For example, they set

frGIN = E[fMP�GNN �gZr], where [Zr]v ⇠ Unif(D) i.i.d. 8 v 2 V [G],

where E indicates expectation and D is a discrete space with at least 1/p elements
for some p > 0. Similar to RP-GNN, frGIN can be implemented by sampling only
a few Zr’s for each evaluation of fMP�GNN �gZ (indeed, one Zr is sampled per for-
warding evaluation (Sato et al, 2021)).

Theorem 5.5. (Theorem 4.1 (Sato et al, 2021)) Consider a GRL example (G ,v),
where only a single node is contained in the node set of interest. For any graph-
structured features (G 0,v0), where the nodes of G 0 have a bounded maximal degree
and the attributes X come from a finite space, then there exist an MP-GNN , such
that:

1. If (G 0,v0)⇠= (G ,v), fMP�GNN �gZr(G
0,v0) > 0.5 with high probability.

2. If (G 0,v0) 6⇠= (G ,v), fMP�GNN �gZr(G
0,v0) < 0.5 with high probability.

This result can be viewed as a characterization of the expressive power of rGIN.
However, this result is lessened by the fact that almost all nodes of all graphs will
be associated with different representations within two iterations of the 1-WL test
(so is MP-GNN) (Babai and Kucera, 1979). Moreover, the isomorphism problem of
graphs with a bounded degree is known to be in P (Fortin, 1996). Instead, a very
recent work was able to demonstrate the universal approximation of rGIN, which
gives a stronger characterization of the expressive power of rGIN.

Theorem 5.6. (Theorem 4.1 (Abboud et al, 2020)) Consider any invariant mapping
f ⇤ : Gn! R, where Gn contains all graphs with n nodes. Then, there exists a rGIN
fMP�GNN �gZr such that

p(| fMP�GNN �gZr � f ⇤| < e) > 1�d , for some given e > 0, d 2 (0,1).

The above RP-GNN and rGIN adopt random attributes that are totally agnostic
to the input data (G ,S). Instead, the next two methods inject random attributes that
leverage the input data. Particularly, these random attributes are related to the po-
sition/location of a node in the graph, which tends to counter the loss of positional
information of nodes in MP-GNN.

5 The Expressive Power of Graph Neural Networks 83

5.4.2.3 Position-aware GNN (PGNN) (You et al, 2019)

You et al (2019) demonstrated that MP-GNN may not capture the position/loca-
tion of a node in the graph, which is critical information for applications such as
link prediction. Therefore, they proposed to use node positional embeddings as ex-
tra attributes. To capture permutation invariance in the sense of expectation, node
positional embeddings are generated based on randomly selected anchor node sets.
We denote the random attributes adopted in PGNN as ZP, which is constructed as
follows. Considering a graph G = (V ,E ,X),

1. Randomly select a few anchor sets (S1,S2, ...,SK), where Sk ⇢ V . Note that the
choice of Sk is agnostic to the node identities: given a k, Sk will include each
node with the same probability.

2. For some u 2 G, set [ZP]u = (d(u,S1), ...,d(u,SK)) where d(u,Sk), k 2 [K] is a
distance metric between u and the anchor set Sk.

As the selection of the anchor sets is agnostic to node identities, the obtained ZP still
satisfies the property 2 in Proposition 5.1. Next, we specify the strategy to sample
these anchor sets and the choice of the distance metric. The primary requirement to
select those anchor sets is to keep low distortion of the two distances between nodes,
where one distance is given by the original graph and the other one is given by those
anchor sets. Specifically, distortion measures the faithfulness of the embeddings in
preserving distances when mapping from one metric space to another metric space,
which is defined as follows:

Definition 5.9. Given two metric spaces (V ,d) and (Z ,d0) and a function ZP : V !
Z , ZP is said to have distortion a if 8u,v2 V , 1

a d(u,v) d0([ZP]u, [ZP]v) d(u,v).

Fortunately, Bourgain (1985) showed the existence of a low distortion embedding
that maps from any metric space to the lp metric space:

Theorem 5.7. (Bourgain’s Theorem (Bourgain, 1985)) Given any finite metric
space (V ,d) with |V | = n, there exists an embedding of (V ,d) into RK under any
lp metric, where K = O(log2 n), and the distortion of the embedding is O(logn).

Based on a constructive proof of Theorem 5.7, Linial et al (1995) provide an
algorithm to construct an O(log2 n) dimensional embedding via anchor sets. This
yields the selection of anchor sets and the definition of the distance metric to define
ZP, which are adopted by PGNN (You et al, 2019).

By selecting K = c log2 n, many random sets Si, j ⇢ V , i = 1,2, ..., logn, j =
1,2, ...,c logn, where c is a constant, Si, j is chosen by including each point in V
independently with probability 1

2i . We further define

[ZP]v =
�d(v,S1,1)

k
,

d(v,S1,2)

k
, ...,

d(v,Slogn,c logn)

k
�

(5.12)

where d(v,Si, j) = minu2Si, j d(v,u). Then, ZP is an embedding method that satisfies
Theorem 5.7.

84 Pan Li and Jure Leskovec

Compared with RP-GNN and rGIN, the random attributes adopted by PGNN
deal specifically with the positional information of a node in graph. Therefore,
PGNN is better for the tasks that are directly related to the positions of nodes,
e.g., link prediction. You et al (2019) did not provide a mathematical character-
ization of the representation power of PGNN. However, the way to establish ZP
allows that for the two nodes u, v, the attributes [ZP]u and [ZP]v by definition are
statistically correlated. As for the example in Fig. 5.9, such correlation gives PGNN
the information that the distance between Lynx and Pelagic Fish is different from
the distance between Orca and Pelagic Fish, and thus may successfully distinguish
(G,{Lynx,Pelagic Fish}) and (G,{Orca,Pelagic Fish}) and making the right link
prediction.

Note that the original PGNN (You et al, 2019) does not use MP-GNN as the
backbone to perform message passing. Instead, PGNN allows message passing from
nodes to anchor sets. As such, this approach is not directly relevant to the expressive
power and is thus out of the scope of this chapter, so we will not discuss it in detail.
Interested readers may refer to the original paper (You et al, 2019).

5.4.2.4 Randomized Matrix Factorization (Srinivasan and Ribeiro,
2020a)(Dwivedi et al, 2020)

Srinivasan and Ribeiro (2020a) recently made an important observation that node
positional embeddings obtained via the factorization of some variants of the adja-
cency matrix A can be used as node attributes as long as certain random perturbation
is allowed. The obtained models still keep permutation invariance in expectation.
Srinivasan and Ribeiro (2020a) argue that a model that is built upon these random
perturbed node positional embeddings is still inductive and holds good general-
ization properties. This significant observation challenges the traditional claim that
models built upon these node positional embeddings are not inductive. A high-level
idea of why this is true is as follows: suppose the SVD decomposition of the adja-
cency matrix A = USUT . When we permute the order of nodes, that is, the row and
column orders of A, the row order of U will be changed simultaneously. Therefore,
the models that use U as the node attributes should keep the permutation invariance.
That randomly perturbed factorization is needed because such SVD decomposition
is not unique.

Although Srinivasan and Ribeiro (2020a) proposed this idea, they did not explic-
itly compute the node positional embeddings via matrix factorization. Instead, their
method samples a series of Gaussian random matrices ZG,1,ZG,2, ... and let them
propagate over the graph, e.g., for the two hops,

ZG = y(Ây(ÂZG,1)+ZG,2),

where y’s are MLPs and Â indicates some variant of the adjacency matrix. The rows
of ZG essentially give rough node positional embeddings. Then, these obtained node
embeddings are further used as the attributes of nodes in MP-GNN.

5 The Expressive Power of Graph Neural Networks 85

Dwivedi et al (2020) indeed adopted matrix factorization explicitly. They pro-
posed to use the randomly perturbed Laplacian eigenmaps as the additional at-
tributes. Specifically, suppose the normalized Laplacian matrix is defined as

L = I�D�1/2AD�1/2,

where D is the diagonal degree matrix. Denote the eigenvalue decomposition of L
as L = USUT . The eigenvalue decomposition is not unique, so we assume that U
can be arbitrarily chosen from all the potential choices. Fortunately, if there are no
multiple eigenvalues, this U is unique for each column up to a ± sign. Then, we
may directly set the extra node attributes as

ZLE = UG , where Gii ⇠ Unif({�1,1}) i.i.d. 8i 2 [|V |], Gi j = 0, 8i 6= j, (5.13)

where G is a diagonal matrix where diagonal elements are uniformly independently
set as 1 or �1. Here, U can be replaced with a few slices of the columns of U .
Let gZLE denote the operation to concatenate these additional attributes ZLE with
the original node attributes. Then, the overall composite model becomes fMP�GNN �
gZLE . The following lemma shows that the permutation invariance of fMP�GNN �gZLE
in expectation if the Laplacian matrices hold distinct eigenvalues:

Lemma 5.3. If (G (1),S(1))⇠= (G (2),S(2)) and if there are no multiple eigenvalues of
their corresponding normalized Laplacian matrices, then any choice of eigenvalue
decomposition to obtain node embeddings will yield

E(fMP�GNN �gZLE (G (1),S(1))) = E(fMP�GNN �gZLE (G (2),S(2))).

Proof. The proof can be easily seen from the above arguments.

As shown in Lemma 5.3, the composite model keeps permutation invariance
in expectation for most graphs, although it may break invariance in some corner
cases. Regarding the expressive power, ZLE associates different nodes with distinct
attributes because U is an orthogonal matrix by definition. Hence, there must exist
fMP�GNN �gZLE that may distinguish any node subsets from the graph:

Theorem 5.8. For any two GRL examples (G ,S(1)), (G ,S(2)) over the same graph
G , even if they are isomorphic, as long as S(1) 6= S(2), there exists an fMP�GNN such
that fMP�GNN �gZLE (G ,S(1)) 6= fMP�GNN �gZLE (G ,S(2)). However, if those two GRL
examples are indeed isomorphic (G ,S(1)) ⇠= (G ,S(2)) over the same graph G and
the normalized Laplacian matrix of G has no multiple same-valued eigenvalues,
then E(fMP�GNN �gZLE (G ,S(1))) = E(fMP�GNN �gZLE (G ,S(2))).

Proof. The proof can be easily seen from the above arguments.

Theorem 5.8 implies the potential of fMP�GNN �gZLE to distinguish different node
sets from the same graph. Note that although fMP�GNN � gZLE achieves great rep-
resentation power, it does not always work very well for link prediction in prac-
tice (Dwivedi et al, 2020) when compared with another model SEAL (Zhang and

86 Pan Li and Jure Leskovec

Chen, 2018b) (compare their performance on the COLLAB dataset in (Hu et al,
2020b)). SEAL is based on the deterministic distance attributes that are introduced
in the next subsection. Whether a model is permutation invariant is a much weaker
statement on characterizing the generalization of the model. Actually, when the
model is paired node positional embeddings, the dimension of the parameter space
increases, and thus also negatively impacts the generalization. A comprehensive in-
vestigation of this observation is left for future study.

In the next subsection, we will introduce deterministic node distance attributes,
which provide a different angle to solve the above problem. Distance encoding has
a solid mathematical foundation and provides the theoretical support for many em-
pirically well-behaved models such as SEAL (Zhang and Chen, 2018b) and ID-
GNN (You et al, 2021).

5.4.3 Injecting Deterministic Distance Attributes

In this subsection, we will introduce an approach that boosts the expressive power
of MP-GNN by injecting deterministic distance attributes.

The key motivation behind the deterministic distance attributes is as follows. In
Section 5.4.1, we have shown that MP-GNN is limited in its ability to measure the
distances between different nodes, to count cycles3, and to distinguish attributed
regular graphs. All of these limitations are essentially inherited from the 1-WL
test which does not capture distance information between the nodes. If MP-GNN
is paired with some distance information, then the composite model must achieve
more expressive power. Then, the question is how to inject the distance information
properly.

There are two important pieces of intuition to design such distance attributes.
First, the effective distance information is typically correlated with the tasks. For
example, consider a GRL example (G ,S). If this task is node classification (|S| = 1),
the information of distance from this node to itself (thus the cycles containing this
node) is relevant because it measures the information of the contextual structure. If
the task is link prediction (|S| = 2), the information of distance between the two end
nodes of the link is relevant as two nodes near to each other in the network tend
to be connected by a link. For graph-level prediction (S = V (G)), the information
of distances between any pairs of nodes could be relevant as it can be viewed as a
group of link predictions. Second, besides the distance between the nodes in S, the
distance from S to other nodes in G may also provide useful side-information. Both
two aspects inspire the design of distance attributes.

There have been a few empirically successful GNN models that leverage deter-
ministic distance attributes, although their impact on the expressive power of GNNs

3 Cycles actually carry a special type of distance information, as they describe the length of walks
from one node to itself. If the distance from one node to itself is not measured by the shortest path
distance but by the returning probability of random walk, this distance already contains the cycle
information.

5 The Expressive Power of Graph Neural Networks 87

has not been characterized until very recently (Li et al, 2020e). For link prediction,
Li et al (2016a) first consider annotating the two end-nodes of the link of interest.
These two end-nodes are annotated with one-hot encodings and all other nodes are
annotated by zeros. Such annotations can be transformed into distance information
via GNN message passing. Again for link prediction, Zhang and Chen (2018b) first
sample an enclosing subgraph around the queried link and then annotate each node
in this subgraph with one-hot encodings of the shortest path distances (SPDs) from
this node to the two end-nodes of the link. Note that deciding whether a node is in
the enclosing subgraph around the queries link already gives a distance attribute.
Zhang and Chen (2019) uses a similar idea to perform matrix completion which is
a similar task to link prediction. For graph classification and graph-level property
prediction, Chen et al (2019a) and Maziarka et al (2020a) adopt the SPDs between
two nodes as edge attributes. These edge attributes can be also used as the input of
MSG (Eq.equation 11.45) in MP-GNN. You et al (2021) annotates a node as 1 and
other nodes as 0 to improve MP-GNN in node classification. As our focus is on the
theoretical characterization of the expressive power, we will not go into detail about
these empirically successful works. Interested readers are referred to the relevant
papers.

Remark 5.7. (Comparison between deterministic distance attributes and random at-
tributes) Deterministic distance attributes have some advantages. First, as there is
no randomness in the input attributes, the optimization procedure of the model con-
tains less noise. Hence, the training procedure tends to converge much faster than
the model with random attributes. The model evaluation performance contains much
less noise too. Some empirical evaluation of the convergence of the model training
with random attributes can be found in Abboud et al (2020). Second, a model based
on deterministic distance attributes typically shows better generalization in practice
than the one based on random attributes. Although theoretically a model is permuta-
tion invariant when being trained based on sufficiently many examples with random
attributes (as discussed in Sec.5.4.2), in practice, this could be hard to achieved due
to the high complexity.

Deterministic distance attributes have some disadvantages. First, models that are
paired with deterministic attributes may never achieve the universal approxima-
tion, unless the graph isomorphism problem is in P. However, random attributes
may be universal in the probabilistic sense (e.g., Theorem 5.6). Second, determin-
istic distance attributes typically depend on the information S in a GRL example
(G ,S). This introduces an issue in computation: that is, if there are two GRL ex-
amples (G (1),S(1)) and (G (2),S(2)) sharing the same graph G but with different
node sets of interest S(1) 6= S(2), they will be attached with different deterministic
distance attributes and hence GNNs have to make inference over them separately.
However, GNNs with random attributes can share intermediate node representations
{h(L)

v |v 2 V [G]} in Eq.equation 5.4, between the two GRL examples, which saves
intermediate computation.

88 Pan Li and Jure Leskovec

5.4.3.1 Distance Encoding (Li et al, 2020e)

Suppose we aim to make prediction for a GRL example (G ,S). Li et al (2020e)
defined distance encoding z (u|S) as an extra node attribute for node u 2 V [G].

Definition 5.10. For a GRL example (G ,S) where G = (A,X). Distance encoding
z (u|S) for node u is defined as follows

z (u|S) = Â
v2S

MLP(z (u|v)) (5.14)

where z (u|v) charaterizes a certain distance between u and v. We may choose

z (u|v) = g(`uv), `uv = (1,(W)uv,(W 2)uv, ...,(W k)uv, ...), (5.15)

where W = AD�1 is the random walk matrix and g(·) is a general function that maps
`uv to different types of distance measures.

Note that z (u|S) depends on the graph structure G , which we omit in our notation
for simplicity. First, setting g(`uv) as the first non-zero position in `uv gives the
shortest-path-distance (SPD) from v to u. Second, setting g(`uv) as follows gives
generalized PageRank scores (Li et al, 2019f):

zgpr(u|v) = Â
k�1

gk(W k)uv = (Â
k�0

gkW k)uv, gk 2 R, for all k 2 Z�0 . (5.16)

Different choices of {gk|k 2 Z�0} yield various distance measures between u and v.

Personalized PageRank scores (Jeh and Widom, 2003): gk = ak, a 2 (0,1),

Heat-kernel PageRank scores (Chung, 2007): gk = b ke�b /k!, b > 0,

Inverse hitting time (Lovász et al, 1993): gk = k.

It is important to see that the above definition of distance encoding satisfies per-
mutation invariance.

Lemma 5.4. For two isomorphic GRL examples (G (1),S(1))
p⇠= (G (2),S(2)), if p(u) =

p(v) for u2V [G (1)] and v2V [G (2)], their distance encodings are equal z (u|S(1)) =
z (v|S(2)).

Proof. The proof can be easily seen by the definition of distance encoding.

Li et al (2020e) considers using distance encoding as node extra attributes.
Specifically, MP-GNN can be improved by setting X̃v = Xv� z (v|S) ,where � is
the concatenation. The obtained model is termed DE-GNN, denoted as fDE .

DE-GNN has been shown to be more powerful than MP-GNN. Recall that the
fundamental limit of MP-GNN is the 1-WL test for graph representation learn-
ing problems (Theorem 5.2). Corollary 5.1 further indicates that attributed regu-
lar graphs may not be distinguished by MP-GNN under certain scenarios. Li et al

5 The Expressive Power of Graph Neural Networks 89

… …

…

… …

…

!"!#

Left Right

Node classification
for structural-role prediction

… …

…

… …

…
+ distance encoding (use shortest
path distance as an example)

Left Right

DE = 0
DE = 1
DE = 2

? ?

$!%&' ()*&, ,%'&-.* /.0ℎ = {1,1}
$!%&' 6789, ,%'&-.* /.0ℎ = {1,∞}

Link prediction

+ distance encoding (use shortest
path distance as an example)

Subtrees rooted at the nodes of interest
!"!#

!# !"

Fig. 5.13: Distance encoding can be used to distinguish non-isomorphic graph-
structured examples. In the example of node classification, we consider classi-
fying nodes based on their roles in their contextual structures, termed structural
roles (Henderson et al, 2012). Nodes in S1 and S2 have different structure roles.
However MP-GNN with two layers will confuse these two nodes; while with dis-
tance encoding, DE-GNN may distinguish them. In the example of link prediction,
although two nodes {Lynx, G} and {Orca, G} are isomorphic (where we ignore the
node identities), distance encoding on the node Seal allows us to distinguish node
pairs {Orca, Pegagic Fish} and {Lynx, Pegagic Fish}.

(2020e) considers the scenario when the graphs are regular and do not have attributes
and proved that DE-GNN can distinguish two GRL examples with high probability,
which is formally stated in the following theorem.

Theorem 5.9. (Theorem 3.3 (Li et al, 2020e)) Consider two GRL examples (G (1),S(1))
and (G (2),S(2)) where G (1) and G (2) are two n-sized unattributed regular graphs,
and |S(1)| = |S(2)| is a constant (independent of n). Suppose G (1) and G (2) are
uniformly independently sampled from all n-sized r-regular graphs where 3 r <
(2logn)1/2. Then, for any small constant e > 0, there exists DE-GNN with certain
weights within L d(1

2 +e) logn
log(r�1)e layers that can distinguish these two examples

with high probability. Specifically, the outputs fDE((G (1),S(1))) 6= fDE((G (2),S(2)))
with probability 1� o(n�1). The specific form of DE, i.e., g in Eq.equation 5.15,
can be simply chosen as short path distance. The little-o notation here and later are
w.r.t. n.

Theorem 5.9 focuses on the node sets of unattributed regular graphs. We con-
jecture that the statement can be generalized to attributed regular graphs as distinct
attributes can only further improve the distinguishing power of a model. Moreover,

90 Pan Li and Jure Leskovec

the assumption on regularity of graphs is also not crucial because the 1-WL test or
MP-GNN may transform all graphs, attributed or not, into attributed regular graphs
with enough iterations (Arvind et al, 2019).

Of course, DE-GNN may not distinguish any non-isomorphic GRL examples.
Li et al (2020e) introduce the limitation of DE-GNN. Particularly, DE-GNN cannot
distinguish nodes of distance regular graphs with the same intersection arrays, al-
though DE-GNN may distinguish their edges (See Fig. 5.14 later). Li et al (2020e)
also generalize the above results to the case that leverages distance attributes as
edge attributes (to control message aggregation in MP-GNN). Interested readers
can check the details in their original paper.

5.4.3.2 Identity-aware GNN (You et al, 2021)

As a concurrent work with DE-GNN, You et al (2021) studied a special type of
distance encoding to improve the node representations learnt by MP-GNN. Specifi-
cally, when MP-GNN is adopted to compute the representation of node v, You et al
(2021) suggests attaching each node u in the graph with an extra binary attribute
zID(u|{v}) to indicate the identity of node v where

zID(u|{v}) =

⇢
1 if u = v,
0 o.w. (5.17)

MP-GNN that leverages zID(u|{v}) is termed Identity-aware GNN (ID-GNN).
zID(u|{v}) is a simple implementation of distance encoding (Eq. equation 5.14)
when the set S contains only one node v. Although ID-GNN does not compute
distance measures as DE-GNN, ID-GNN holds the same representation power as
DE-GNN for node classification, as the distance information from another node u
to the target node v can be learnt by ID-GNN via an extra identity attribute.

Theorem 5.10. For two graph-structured examples (G (1),S(1)) and (G (2),S(2)),
where |S(i)| = 1 for i 2 {1,2} and G (i) is unattributed, if DE-GNN can distinguish
them with L layers, then ID-GNN requires at most 2L layers to distinguish them.

Proof. ID-GNN needs the first L layers to propagate the identity attribute to capture
distance information and the second L layers to let such information propagate back
to finally be merged into the node representations.

Although ID-GNN adopts a specific type of DE to learn node representations, ID-
GNN was also used to perform graph-level prediction (You et al, 2021). Specifically,
for every node v in the graph G, ID-GNN attaches 1 to this node, 0’s to other nodes
and computes the node representation hv. Iterating over all the nodes, ID-GNN col-
lects all node representations {hv|v 2 V (G)}. Then, by following Eq.equation 5.4
(S is the entire node set V (G) here), ID-GNN can aggregate the node representa-
tions of all the nodes and further make graph-level predictions. Actually, combining
the statement of Theorem 5.9 and the union bound, Li et al (2020e) indicates the

5 The Expressive Power of Graph Neural Networks 91

a b c d DE = {0, 1}
DE = {1, 1}
DE = {1, 2}
DE = {2, 2}

DE-GNN for |S|=2
a b c d

ID-GNN for |S|=2

Fig. 5.14: ID-GNN v.s. DE-GNN makes predictions for a pair of nodes. Two graphs
are the Shrikhande graph (left) and the 4⇥4 Rook’s graph (right). ID-GNN (black
nodes attached identities) cannot distinguish node pairs {a,b} and {c,d}. DE-GNN
may learn distinct representations of {a,b} and {c,d}. In these two graphs, each
node is colored with its DE that is a set of SPDs to either node in the target node
sets {a,b} or {c,d} (Eq. equation 5.14). Note that the neighbors of nodes with DE=
{1,1} (dashed boxes) are enclosed by red ellipses which shows that the neighbors
of these two nodes have different DE’s. Hence, after one layer of DE-GNN, the
intermediate representations of nodes with DE= {1,1} are different between these
two graphs. Using another layer, DE-GNN can distinguish the representations of
{a,b} and {c,d}.

expressive power of the above procedure for the entire graph classification problem,
summarized in the following corollary.

Corollary 5.2. (Reproduced from Corollary 3.4 (Li et al, 2020e)) Consider two
GRL examples G (1) and G (2). Suppose G (1) and G (2) are uniformly independently
sampled from all n-sized unattributed r-regular graphs where 3 r < (2logn)1/2.
Then, ID-GNN with a sufficient number of layers can distinguish these two graphs
with probability 1�o(1). The little-o notation here and later are w.r.t. n.

ID-GNN can be viewed as the simplest version of DE-GNN that achieves the
same expressive power for node-level prediction. However, when the prediction
tasks contain two nodes, i.e., node-pair-level prediction, ID-GNN will be less pow-
erful than DE-GNN.

To make a prediction for a GRL example (G ,S) where |S| = 2, ID-GNN can
adopt two different approaches. First, ID-GNN can attach the extra identity at-
tributes to the two nodes in S separately, learn their representations separately and
combine these two representations to make the final prediction. However, this ap-
proach cannot capture the distance information between the two nodes in S. Instead,
ID-GNN uses an alternative approach. ID-GNN attaches the extra identity attribute
to only one of nodes in S and performs message passing. Then, after a sufficient
number of layers where the extra node identity is propagated from one node to
another in S, the distance information between these two nodes can be captured.
Finally, ID-GNN makes its prediction based on the two node representations in S.
Note that although the second approach captures the distance information between
the two nodes in S, it is still less powerful than DE-GNN. One example is shown in
Fig. 5.14.

92 Pan Li and Jure Leskovec

Up to this point, we have mostly focused on the message passing framework of
GNNs, which leverages the sparsity of real-world graphs. In the next subsection, we
remove the need for sparsity and discuss higher-order GNNs. These GNNs essen-
tially mimic higher-dimensional WL tests and achieve more expressive power.

5.4.4 Higher-order Graph Neural Networks

The final collection of techniques for building GNNs, which overcome the limi-
tation of the 1-WL test, are related to higher-dim WL test. In this subsection, for
notational simplicity, we focus only on graph-level prediction learning problems,
where higher-order GNNs are mostly used.

The family of WL tests forms a hierarchy for the graph isomorphism prob-
lem (Cai et al, 1992). There are different definitions of the higher-dim WL tests.
We follow the terminology adopted in Maron et al (2019a) and introduce two types
of WL tests: the k-forklore WL (k-FWL) test and the k-WL test.

Recall G (i) = {A(i),X (i)}, i 2 {1,2} . For both G (i)’s, i 2 {1,2}, do the following steps.

1. For each k-tuple of node set Vj = (v j1 ,v j2 , ...,v jk) 2 V k, j 2 [n]k, we initialize Vj with a
color denoted by C(0)

j . These colors satisfy the condition that for two k-tuples, say Vj and

Vj0 , C(0)
j and C(0)

j0 are the same if and only if: (1) Xv ja = Xv j0a
; (2) v ja = v jb , v j0a = v j0b

;
and (3) (v ja ,v jb) 2 E , (v j0a ,v j0b

) 2 E for all a,b 2 [k].
2. k-FWL: For each k-tuple Vj and u2V , define Nk�FWL(Vj;u) as a k-tuple of k-tuples, such

that Nk�FWL(Vj;u) = ((u,v j2 , ...,v jk),(v j1 ,u, ...,v jk),(v j1 ,v j2 , ...,u)). Then the color of Vi
can be updated via the following mapping.

Update colors: C(l+1)
j HASH(C(l)

j ,{(C(l)
j0 |Vj0 2 Nk�FWL(Vj;u))}u2V). (5.18)

k-WL: For each k-tuple Vj and u 2 V , define Nk�WL(Vj;u) as a set of k-tuples such that
Nk�WL(Vj;u) = {(u,v j2 , ...,v jk),(v j1 ,u, ...,v jk),(v j1 ,v j2 , ...,u)} Then, the color of Vi can
be updated via the following mapping.

Update colors: C(l+1)
j HASH(C(l)

j ,[u2V {C(l)
j0 |V 0j 2 Nk�WL(Vj;u)}), (5.19)

where the HASH operations in both cases guarantee an injective mapping with different
inputs yielding different outputs.

3. For each step l, {C(l)
j } j2[V (G(i))]k is a multi-set. If such multi-sets of the two graphs are

not equal, return G (1) 6⇠= G (2). Otherwise, go to Eq. equation 5.19.

Similar to the 1-WL test, if the k-(F)WL test returns G (1) 6⇠= G (2), then it follows that G (1),
G (2) are not isomorphic. However, the reverse is not true.

Fig. 5.15: Use k-FWL and k-WL to distinguish G (1) and G (2).

The key idea of these higher-dim WL tests is to color every k-tuple of nodes in
the graphs and update these colors by aggregating the colors from other k-tuples that

5 The Expressive Power of Graph Neural Networks 93

share k�1 nodes. The procedures of the k-FWL test and the k-WL test are shown in
Fig. 5.15. Note that they perform aggregation differently, and as such, have different
power to distinguish non-isomorphic graphs. These two types of tests form a nested
hierarchy, as summarized in the following theorem.

Theorem 5.11. (Cai et al, 1992; Grohe and Otto, 2015; Grohe, 2017)

1. The k-FWL test and the k +1-WL test have the same discriminatory power, for
k � 1.

2. The 1-FWL test, the 2-WL test and the 1-WL test have the same discriminatory
power.

3. There are some graphs that the k + 1-WL test can distinguish while the k-WL
test cannot, for k � 2.

Because of Theorem 5.11, GNNs that are able to capture the power of these
higher-dim WL tests can be strictly more powerful than the 1-WL test. Therefore,
higher-order GNNs have the potential to learn even more complex functions than
MP-GNN.

However, the drawback of these GNNs is their computational complexity. By
the definition of higher-order WL tests, the colors of all k-tuples of nodes need to
be tracked. Correspondingly, higher-order GNNs that mimic higher-order WL tests
need to associate each k-tuple with a vector representation. Therefore, their memory
complexity is at least W(|V |k), where |V | is the number of nodes in the graph. The
computational complexity is at least W(|V |k+1), which makes these higher-order
GNNs prohibitively expensive for large-scaled graphs.

5.4.4.1 k-WL-induced GNNs (Morris et al, 2019)

Morris et al (2019) first proposed k-GNN by following the k-WL test. Specifically,
k-GNN associates each k-tuple of nodes, denoted by Vj, j 2 V k, with a vector repre-
sentation that is initialized as h(0)

j . In order to save memory, k-GNN only considers
k-tuples that contain k different nodes and ignores the order of these nodes. There-
fore, each k-tuple reduces to a set of k nodes. With some modification of notation in
this subsection, let V j denote this set of k different nodes. The initial representation
of V j, h(0)

j is chosen as a one-hot encoding such that h(0)
j = h(0)

j0 , if and only if the
subgraphs induced by Vj and Vj0 are isomorphic.

Then, k-GNN follows the following update procedure of these representations:

h(l+1)
j = MLP(h(l)

j � Â
Vj0 :Nk�GNN(Vj)

h(l)
j0), 8 k-sized node sets Vj, (5.20)

where Nk�GNN(Vj) = {Vj0 | |Vj0 \Vj| = k� 1}. Note that Nk�GNN(Vj) defines the
neighbors of Vj differently than Nk�WL (see Eq.equation 5.19), because Vj is now a
k-sized node set instead of a k-tuple.

94 Pan Li and Jure Leskovec

Eq.equation 5.20 has time complexity at least O(|V |k) as the size of Nk�GNN(Vj)
is O(|V |k). Recently, Morris et al (2019) also considers using a local neighbor-
hood of Vj instead of Nk�GNN(Vj). This local neighborhood only includes Vj0 2
Nk�GNN(Vj), such that the node in Vj0\Vj is connected to at least one node in Vj.
Morris et al (2020b) demonstrated that a variant of this local version of k-GNN may
be as powerful as the k-WL test, although a deeper architecture with more layers is
needed to match the expressive power.

k-GNN is at most as powerful as the k-WL test. To be more expressive than
MP-GNN, k = 3 is needed. Therefore, the memory complexity is at least W(|V |3).
Subsequently, the computational complexity of k-GNN, even for their local version,
is at least W(|V |3) per layer.

5.4.4.2 Invariant and equivariant GNNs (Maron et al, 2018, 2019b)

To build higher-order GNNs, every k-tuple needs to be associated with a vector rep-
resentation. Therefore, regardless whether a local or a global neighborhood aggrega-
tion is adopted (Eq.equation 5.20), the benefit of reducing the computation by lever-
aging the sparse graph structure is limited, as it cannot reduce the dominant term
W(|V |k). Moreover, to handle a sparse graph structure, these higher-order GNNs
also need random memory access, which introduces additional computational over-
head. Therefore, a line of research into building higher-order GNNs totally ignores
graph sparsity. Graphs are viewed as tensors and NNs take these tensors as input.
The NNs are designed to be invariant to the order of tensor indices.

Many approaches (Maron et al, 2018, 2019a,b; Chen et al, 2019f; Keriven and
Peyré, 2019; Vignac et al, 2020a; Azizian and Lelarge, 2020) adopt this formulation
to build GNNs and analyze their expressive power.

Each k-tuple Vj 2 V k is associated with a vector representation h(l)
j . We assume

that h(l)
j 2 R for simplicity. By concatenating the k-tuple’s representations together,

we obtain a k-order tensor:

H 2 R⌦k|V |, where R⌦k|V | = R
|V |⇥ · · ·⇥ |V || {z }

k times .

Maron et al (2018) investigates linear permutation invariant and equivariant map-
pings defined on R⌦k|V |.

Definition 5.11. Given a bijective mapping p : V ! V and H 2 R⌦k|V |, define
p(H) := H 0, where H 0(p(v1),p(v2),...,p(vk))

= H(v1,v2,...,vk), for all k-tuples (v1,v2, ...,vk)

2 V k.

Definition 5.12. A mapping g : R⌦k|V |! R is called invariant, if for any bijective
mapping p : V ! V and H 2 R⌦k|V |, g(H) = g(p(H)).

Definition 5.13. A mapping g : R⌦k|V | ! R⌦k|V | is called equivariant, if for any
bijective mapping p : V ! V and H 2 R⌦k|V |, p(g(H)) = g(p(H)).

5 The Expressive Power of Graph Neural Networks 95

Maron et al (2018) showed that the number of the bases needed to represent all
possible linear invariant mappings from R⌦k|V | ! R is b(k), where b(k) is the k-
th Bell number. Additionally, the number of bases, needed to represent all possible
linear equivariant mappings from R⌦k|V | ! R⌦k0 |V |, is b(k + k0). To better under-
stand this observation, consider the invariant case with k = 1. In this case, the linear
invariant mapping g : R|V | ! R is essentially an invariant pooling (Def.5.7). As
b(1) = 1, the linear invariant mapping g : R|V |! R only holds one single base —
the sum pooling, i.e., g follows the form g(a) = ch1,ai, where c is a parameter to
be learned. Consider the equivariant case, where k = 1 and k0 = 1. As b(2) = 2,
the linear equivariant mapping g : R|V |! R|V | holds two bases, i.e., g has the form
g(a) = (c1I + c211>)a, where c1,c2 are parameters to be learned.

Based on the above observations, GNNs can be built by compositing these linear
invariant/equivariant mappings. Learning can be performed via learning the weights
before the above bases. Towards this end, Maron et al (2018, 2019a) has proposed
using these linear invariant/equivariant mappings to build GNNs:

fk�inv = ginv �g(L)
equ �s �g(L�1)

equ �s · · ·�s �g(1)
equ, (5.21)

where ginv is a linear invariant layer R⌦k|V |! R, g(l)
equ’s, l 2 [L] are linear equivari-

ant layers from R⌦k|V | ! R⌦k|V |, and s is an element-wise non-linear activation
function. It can be shown that fk�inv is an invariant mapping. Maron et al (2018);
Azizian and Lelarge (2020) proved that the connection of fk�inv to the k-WL test
can be summarized with the following theorem.

Theorem 5.12. (Reproduced from (Maron et al, 2018; Azizian and Lelarge, 2020))
For two non-isomorphic graphs G (1) 6⇠= G (2), if the k-WL test can distinguish them,
then there exists fk�inv that can distinguish them.

Maron et al (2019b); Keriven and Peyré (2019) also studied whether the models
fk�inv may universally approximate any permutation invariant function. However,
they were pessimistic in their conclusion since this would require high-order tensors,
k = W(n), which can hardly be implemented in practice (Maron et al, 2019b).

Similar to k-GNN, finv is also at most as powerful as the k-WL test. To be more
expressive than MP-GNN, finv should use at least k = 3. Therefore, the memory
complexity is at least W(|V |3). Then, the number of bases of the linear equivariant
layer is b(6) = 203. Therefore, the computation at each layer follows that: (1) a
tensor in R⌦3|V | times b(6) many tensors in R⌦6|V | get b(6) many tensors in R⌦3|V |;
(2) these tensors get summed into a single tensor in R⌦3|V |.

5.4.4.3 k-FWL-induced GNNs (Maron et al, 2019a; Chen et al, 2019f)

The higher-order GNNs in previous two subsections match the expressive power of
the k-WL test. According to Theorem 5.11, the k-FWL test holds the same power
as the k + 1-WL test, which is strictly more powerful than the k-WL test for k � 2,
while the k-FWL test only needs to track the representations of k-tuples. Therefore,

96 Pan Li and Jure Leskovec

if GNNs can mimic the k-FWL test, they may hold similar memory cost as the GNNs
introduced in the previous two subsections while being more expressive. Maron et al
(2019a); Chen et al (2019f) proposed PPGN and Ring-GNN respectively to match
the k-FWL test.

The key difference between the k-FWL test and the k-WL test is the leverag-
ing of the neighbors of a k-tuple Vj. Note that Nk�FWL(Vj;u) in Eq.equation 5.18
groups the neighboring tuples of Vj into a higher-level tuple, while Nk�WL(Vj;u)
skips grouping them due to the set union operation in Eq.equation 5.19. This yields
the key mechanism in the GNN design to match the k-FWL test: implement the ag-
gregating procedure in the k-FWL test of Eq.equation 5.18 via a product-sum pro-
cedure. Suppose the representation for Vj is h j 2R. We may design the aggregation
of {(C(l)

j0 |Vj0 2 Nk�FWL(Vj;u))}u2V as

Â
u2V

’
Vj0 2Nk�FWL(Vj ;u)

h j0 .

If we combine all these representations into a tensor H 2 R⌦k|V |⇥F , the above oper-
ation can essentially be represented as tensor operation, i.e., define

H 0 := Â
u2V

Hu,·,··· ,·�H·,u,··· ,·� · · ·�H·,·,··· ,u, where

[H 0]v j1 ,v j2 ,··· ,v jk
= Â

u2V
Hu,v j2 ,··· ,v jk

·Hv j1 ,u,··· ,v jk
· · · · ·Hv j1 ,v j2 ,··· ,u.

Based on the above observation, Maron et al (2019a) built PPGN as follows.
First, for all Vj 2 V k, initialize h(0)

j 2 R such that h(0)
j = h(0)

j0 , if and only if: (1)
Xv ja = Xv j0a

; (2) v ja = v jb , v j0a = v j0b
; and (3) (v ja ,v j0b

) 2 E , (v j0a ,v j0b
) 2 E , for

all a,b 2 [k]. Then, combine h(0)
j into a tensor H(0) 2 R⌦k|V |. Perform the updating

procedure for l = 0,1, ...,L�1:

H(l+1) = H̃(l,0)�
"

Â
u2V

H̃(l,1)
u,·,··· ,·� H̃(l,2)

·,u,··· ,·� · · ·� H̃(l,k)
·,·,··· ,u

#
,

where, H̃(l,i) = MLP(l,i)(H(l)). (5.22)

Here, MLPs are imposed at the last dimension of these tensors. MLPs with different
sup-script have different parameters. Finally, perform a READOUT ÂVj2V k h(L)

j to
obtain the graph representation.

Maron et al (2019a) proved that PPGN, when k = 2, can match the power of the
2-FWL test. Azizian and Lelarge (2020) generalized this result to an arbitrary k.

Theorem 5.13. (Reproduced from (Azizian and Lelarge, 2020)) For two non-isomorphic
graphs G(1) 6⇠= G(2), if the k-FWL test can distinguish them, then there exists a PPGN
that can distinguish them.

5 The Expressive Power of Graph Neural Networks 97

To be more powerful than the 1-WL test, PPGN only needs to set k = 2 and hence
the memory complexity is just W(|V |2). Regarding the computation, the product-
sum-type aggregation of PPGN is indeed more complex than finv in Sec.5.4.4.2.
However, when k = 2, Eq.equation 5.22 reduces to the product of two matrices,
which can be efficiently computed in parallel computing units.

5.5 Summary

Graph neural networks have recently achieved unprecedented success across many
domains due to their great expressive power to learn complex functions defined
over graphs and relational data. In this chapter, we provided a systematic study of
the expressive power of GNNs by giving an overview of recent research results in
this field.

We first established that the message passing GNN is at most as powerful as the
1-WL test to distinguish non-isomorphic graphs. The key condition that guaran-
tees to match the limit is an injective updating function of node representations.
Next, we discussed techniques that have been proposed to build more powerful
GNNs. One approach to make message passing GNNs more expressive is to pair
the input graphs with extra attributes. In particular, we discussed two types of extra
attributes — random attributes and deterministic distance attributes. Injecting ran-
dom attributes allows GNNs to distinguish any non-isomorphic graphs, though a
large amount of data augmentation is required to make GNNs approximately invari-
ant. Meanwhile, injecting deterministic distance attributes does not require the same
data augmentation, but the expressive power of the resulting GNNs still holds certain
limitations. Mimicking higher-dimensional WL tests is another way to build more
powerful GNNs. These approaches do not track node representations. Instead, they
update the representation of every k-tuple of nodes (k � 2). Overall, the message
passing GNN is powerful but holds some limits in its expressive power. Different
techniques make GNNs overcome these limits to a different extent while incurring
different types of computational costs.

We would like to list some additional research results on the expressive power
of GNNs that we were not able to cover earlier due to space limitations. Barceló
et al (2019) study the expressive power of GNNs to represent Boolean classifiers,
which is useful to understand how GNNs represent knowledge and logic. Vignac
et al (2020a) propose a structural message passing framework for GNNs, where a
matrix instead of a vector is adopted as the node representation to make GNN more
expressive. Balcilar et al (2021) studied the expressivity of GNNs via the spectral
analysis of GNN-based graph signal transformations. Chen et al (2020k) studies the
effect of non-linearity of GNNs in the message passing procedure on their expres-
sive power, which complements our understanding of many works that suggest a
linear message passing procedure (Wu et al, 2019a; Klicpera et al, 2019a; Chien
et al, 2021).

98 Pan Li and Jure Leskovec

Theoretical characterization of GNNs is an important research direction, where
the analysis of expressive power is only one of its aspects, perhaps the best-studied
up to this point. Machine learning models hold two fundamental blocks, training and
generalization. However, only a few research works have analyzed them (Garg et al,
2020; Liao et al, 2021; Xu et al, 2020c). The authors suggest that future research
on building more expressive GNNs always takes these two blocks into account.
A related, significant question is how to build more expressive GNNs with only a
limited depth and width4. Note that limiting the model depth and width yields the
potential of more efficient GNN training and better generalization. To conclude this
chapter, let us quote Sir Winston Churchill:“Now this is not the end. It is not even the
beginning of the end. But it is, perhaps, the end of the beginning.” We have strong
confidence that the machine learning community will put more effort on theory for
GNNs in the future to match their success and break their encountered difficulties
in real-world applications.

Acknowledgements The authors would like to greatly thank Jiaxuan You and Weihua Hu for
sharing many materials reproduced here. The authors would like to greatly thank Rok Sosič
and Natasha Sharp for commenting on and polishing the manuscript. The authors also grate-
fully acknowledge the support of DARPA under Nos. HR00112190039 (TAMI), N660011924033
(MCS); ARO under Nos. W911NF-16-1-0342 (MURI), W911NF-16-1-0171 (DURIP); NSF under
Nos. OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940 (Expeditions), IIS-2030477
(RAPID), NIH under No. R56LM013365; Stanford Data Science Initiative, Wu Tsai Neuro-
sciences Institute, Chan Zuckerberg Biohub, Amazon, JPMorgan Chase, Docomo, Hitachi, Intel,
JD.com, KDDI, NVIDIA, Dell, Toshiba, Visa, and UnitedHealth Group. J. L. is a Chan Zuckerberg
Biohub investigator.

Editor’s Notes: The theoretical analysis of expressive power reveals how
the architecture of GNNs works and gains its advantage. Hence it provides
support for readers to understand the great success of GNNs in fundamental
graph learning tasks, e.g. link prediction (chapter 10) and graph matching
(chapter 13), various downstream tasks, e.g. recommender system (chapter
19) and natural language processing (chapter 21), as well as its relevance
with other GNNs’ characterizations, e.g. scalability (chapter 6) and robust-
ness (chapter 8). Inspired by these theories, it’s also probably to motivate
the study of preferable GNN models that can break through unsolved chal-
lenges in existing problems, such as graph transformation (chapter 12) and
drug discovery (chapter 24).

4 Loukas (2020) measures the required depth and width of GNNs by viewing them as distributed
algorithms, which does not assume permutation invariance. Instead, here we are talking about the
expressive power that refers to the capability of learning permutation invariant functions.

