
Chapter 27
Graph Neural Networks in Urban Intelligence

Yanhua Li, Xun Zhou, and Menghai Pan

Abstract In recent years, smart and connected urban infrastructures have undergone
a fast expansion, which increasingly generates huge amounts of urban big data, such
as human mobility data, location-based transaction data, regional weather and air
quality data, social connection data. These heterogeneous data sources convey rich
information about the city and can be naturally linked with or modeled by graphs,
e.g., urban social graph, transportation graph. These urban graph data can enable
intelligent solutions to solve various urban challenges, such as urban facility plan-
ning, air pollution, etc. However, it is also very challenging to manage, analyze, and
make sense of such big urban graph data. Recently, there have been many studies
on advancing and expanding Graph Neural Networks (GNNs) approaches for var-
ious urban intelligence applications. In this chapter, we provide a comprehensive
overview of the graph neural network (GNN) techniques that have been used to em-
power urban intelligence, in four application categories, namely, (i) urban anomaly
and event detection, (ii) urban configuration and transportation planning, (iii) ur-
ban traffic prediction, and (iv) urban human behavior inference. The chapter also
discusses future directions of this line of research. The chapter is (tentatively) orga-
nized as follows.
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27.1 Graph Neural Networks for Urban Intelligence

27.1.1 Introduction

According to the report (Desa, 2018) published by the United Nations in 2018, the
urban population in the world reached 55 percent in 2018, which is growing rapidly
over time. By 2050, the world will be one-third rural (34 percent) and two-thirds
urban (66 percent). Moreover, thanks to the fast development of sensing technolo-
gies in recent years, various sensors are widely deployed in the urban areas, e.g., the
GPS sets on vehicles, personal devices, air quality monitoring stations, gas pressure
regulators, etc. Stimulated by the large urban population and the wide use of the
sensors, there are massive data generated in the urban environment, for example,
the trajectory data of the vehicles in ride-sharing services, the air quality monitoring
data. Given a large amount of heterogeneous urban data, the question to answer is
what and how can we benefit from these data. For instance, can we use the GPS data
of the vehicles to help urban planners better design the road network? Can we infer
the air quality index across the city based on a limited number of existing monitor-
ing stations? To answer these practical questions, the interdisciplinary research area,
Urban Intelligence, has been extensively studied in recent years. In general, Urban
Intelligence, which is also referred as urban computing, is a process of acquisition,
integration, and analysis of big and heterogeneous data generated by a diversity of
sources in urban spaces, such as sensors, devices, vehicles, buildings, and humans,
to tackle the major issues in cities (Zheng et al, 2014).

Data analytics (e.g., data mining, machine learning, optimization) techniques are
usually employed to analyze numerous types of data generated in the urban scenar-
ios for prediction, pattern discovery, and decision-making purposes. How to repre-
sent urban data is an essential question for the design and implementation of these
techniques. Given the heterogeneity of urban big data, various data structures can
be used to represent them. For example, spatial data in an urban area can be rep-
resented as raster data (like images), where the area is partitioned into grid cells
(pixels) with attribute functions imposed on them (Pan et al, 2020b; Zhang et al,
2019, 2020b,a; Pan et al, 2019, 2020a). Spatial data can also be represented as a
collection of objects (e.g., vehicles, point-of-interests, and trajectory GPS points)
with their locations and topological relationships defined (Ding et al, 2020b).

Moreover, the intrinsic structures of many urban big data enable people to rep-
resent them with graphs. For instance, the structure of urban road network helps
people model the traffic data with graphs (Xie et al, 2019b; Dai et al, 2020; Cui
et al, 2019; Chen et al, 2019b; Song et al, 2020a; Zhang et al, 2020e; Zheng et al,
2020a; Diao et al, 2019; Guo et al, 2019b; Li et al, 2018e; Yu et al, 2018a; Zhang
et al, 2018e); the pipeline of gas supply network enable people to model the gas
pressure monitoring data with graph (Yi and Park, 2020); people can also represent
the data on the map with a graph by dividing the city into functional regions (Wang
et al, 2019o; Yi and Park, 2020; Geng et al, 2019; Bai et al, 2019a; Xie et al, 2016).
Representing urban data with graphs can capture the intrinsic topological informa-
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tion and knowledge in the data, and plenty of techniques are developed to analyze
the urban graph data.

Graph Neural Networks (GNNs) are naturally employed to solve various real-
world problems with urban graph data. For example, Convolutional Graph Neu-
ral Networks (ConvGNN) (Kipf and Welling, 2017b) are used to capture the spa-
tial dependencies of the urban graph data, and Recurrent Graph Neural Networks
(RecGNN) (Li et al, 2016b) are for the temporal dependencies. Spatial-temporal
Graph Neural Networks (STGNN) (Yu et al, 2018a) can capture both spatial and
temporal dependencies in the data, which are widely used in dealing with many ur-
ban intelligence problems, e.g., predicting traffic status based on urban traffic data
(Zhang et al, 2018e; Li et al, 2018e; Yu et al, 2018a). The traffic data are modeled
as spatial-temporal graphs where the nodes are sensors on road segments, and each
node has the average traffic speed within a window as dynamic input features.

In the following sections, we first summarize the general application scenarios in
urban intelligence, followed by the graph representations in urban scenarios. Then,
we provide more details on GNN for urban configuration and transportation plan-
ning, urban anomaly and event detection, and urban human behavior inference, re-
spectively.

27.1.2 Application scenarios in urban intelligence

The diverse application domains in urban intelligence include urban planning, trans-
portation, environment, energy, human behavior analysis, economy, and event de-
tection, etc. In the following paragraphs, we will introduce the practical problems
and the common datasets in these domains. The problems and examples highlighted
below are not exhaustive, here we just introduce some critical problems and typical
examples from literature, which are summarized in Table 27.1.
1) Urban configuration. Urban configuration is essential for enabling smart cities.
It deals with the design problem of the entire urban area, such as, the land use, the
layout of human settlements, design of road networks, etc. The problems in this
domain includes estimating the impact of a construction (Zhang et al, 2019c), dis-
covering the functional regions of the city (Yuan et al, 2012), detecting city bound-
aries (Ratti et al, 2010), etc. In (Zhang et al, 2019c), the authors employ and ana-
lyze the historical taxi GPS data and the road network data, where they define the
off-deployment traffic estimation problem as a traffic generation problem, and de-
velop a novel deep generative model TrafficGAN that captures the shared patterns
across spatial regions of how traffic conditions evolve according to travel demand
changes and underlying road network structures. This problem is important to city
planners to evaluate and develop urban deployment plans. In (Yuan et al, 2012), the
authors propose a DRoF framework that Discovers Regions of different Functions
in a city using human mobility between regions with data collected from the GPS
set in Taxis in Beijing and points of interest (POIs) located in the city. The under-
standing of functional regions in a city can calibrate urban planning and facilitate
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Table 27.1: Application domain and examples in urban intelligence.

Application domain Example task Example data source

Urban configuration Estimate impact of construction
(Zhang et al, 2019c) Taxi GPS, road network.

Discover functional regions
(Yuan et al, 2012) Taxi GPS, POIs.

Transportation Improve efficiency of taxi drivers
(Pan et al, 2019) Taxi GPS, road network.

Environment Infer air quality(Zheng et al, 2013) Air quality data from monitor
stations, road network, POIs.

Energy consumption Estimate gas consumption
(Shang et al, 2014) Taxi GPS.

Human behavior Estimate user similarity(Li et al, 2008) GPS data from phones.

Economy Place retail store
(Karamshuk et al, 2013) POIs, human mobility data.

Public Safety Detect anomalous traffic pattern
(Pang et al, 2011) Taxi GPS, road network.

other applications, such as choosing a location for a business. In (Ratti et al, 2010),
the authors propose a model to detect the city’s boundary by analyzing the human
network inferred from a large telecommunications database in Great Britain. An-
swering this question can help the city planner get a sense on what the exact range
the urban area is within as the urban area changes fast over time.
2) Transportation. Transportation plays an important role in the urban area. Urban
intelligence deals with several problems regarding the transportation in the city, e.g.,
routing for the drivers, estimating the travel time, improving the efficiency of taxi
system and the public transit system, etc. In (Yuan et al, 2010), the authors propose a
T-Drive system, that provides personalized driving directions that adapt to weather,
traffic conditions, and a person’s own driving habits. The system is built based on
historical trajectory data of taxicabs. In (Pan et al, 2019), the authors propose a solu-
tion framework to analyze the learning curve of taxi drivers. The proposed method
first learns the driver’s preference to different profiles and habit features in each
time period, then analyzes the preference dynamics of different groups of drivers.
The results illustrate that taxi drivers tend to change their preference to some habit
features to improve their operation efficiency. This finding can help the new drivers
improve their operation efficiency faster. The authors in (Watkins et al, 2011) con-
ducted a study on the impact of providing real-time bus arrival information directly
on riders’ mobile phones and found it to reduce not only the perceived wait time of
those already at a bus stop, but also the actual wait time experienced by customers
who plan their journey using such information.
3) Urban Environment. Urban intelligence can deal with the potential threat to the
environment caused by the fast pace of urbanization. The environment is essential
for people’s health, for example, air quality, noise, etc. In (Zheng et al, 2013), the
authors infer the real-time and fine-grained air quality information throughout a city
based on the (historical and real-time) air quality data reported by existing monitor
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stations and a variety of data sources observed in the city, such as meteorology, traf-
fic flow, human mobility, structure of road networks, and POIs. The results can be
used to suggest people when and where to conduct outdoor activities, e.g., jogging.
Also, the result can infer suitable locations for deploying new air quality monitoring
stations. Noise pollution is usually serious in the urban area. It has impacts to both
the mental and physical health of human beings. Santini et al (2008) assess environ-
mental noise pollution in urban areas by using the monitoring data from wireless
sensor networks.
4) Energy supply and consumption. Another application domain of urban intelli-
gence is energy consumption in the urban area, which usually deals with the problem
of sensing city-scale energy cost, improving energy infrastructures, and finally re-
ducing energy consumption. The common energy include gas and electricity. Shang
et al (2014) inferred the gas consumption and pollution emission of vehicles travel-
ing on a city’s road network in the current time slot using GPS trajectories from a
sample of vehicles (e.g., taxicabs). The knowledge can be used not only to suggest
cost-efficient driving routes but also to identify the road segments where gas has
been wasted significantly. Momtazpour et al (2012) proposes a framework to pre-
dict electronic vehicle (EV) charging needs based on owners’ activities, EV charg-
ing demands at different locations in the city and available charge of EV batteries,
and design distributed mechanisms that manage the movements of EVs to different
charging stations.
5) Urban human behavior analysis. With the popularization of smart devices,
people can generate massive location-embedded information every day, such as,
location-tagged text, image, video, check-ins, GPS trajectories. The first question in
this domain is estimating user similarity, and similar users can be recommended as
friends. Li et al (2008) connects users with similar interests even when they may not
have known each other previously, and community discovery, which employs the
GPS trajectories collected from GPS equipped devices like phones.
6) Economy. Urban intelligence can benefit the urban economy. The human mobil-
ity and the statistics of POIs can reflect the economy of the city. For example, the
average price of a dinner in the restaurants can indicate the income level and the
power of consumption. In (Karamshuk et al, 2013), the authors study the problem
of optimal retail store placement in the context of location-based social networks.
They collected human mobility data from Foursquare and analyzed it to understand
how the popularity of three retail store chains in New York is shaped in terms of
number of check-ins. The result indicates that some POIs, like train station and air-
port, can imply the popularity of the location, also, the number of competitive stores
is an indicator for the popularity.
7) Public safety. Public safety and security in the urban area is always attracting
people’s concerns. The availability of different data enable us to learn from his-
tory how to deal with public safety problems, e.g., traffic accident (Yuan et al,
2018), large event (Vahedian et al, 2019; Khezerlou et al, 2021, 2017; Vahedian
et al, 2017), pandemic (Bao et al, 2020), etc., and we can use the data to detect
and predict abnormal events. Pang et al (2011) detects the anomalous traffic pattern
from the spatial-temporal data of vehicles. The authors partition a city into uniform
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grids and counted the number of vehicles arriving in a grid over a time period. The
objective was to identify contiguous sets of cells and time intervals that have the
largest statistically significant departure from expected behavior (i.e., the number of
vehicles).

27.1.3 Representing urban systems as graphs

Various data structures and models can be employed to define the spatial settings
of urban systems. For example, a simple model is a grid structure, where the ur-
ban area is partitioned into grid cells, with a set of attribute values of interest (e.g.,
average traffic speed, number of taxis, population, rainfall) associated with each
cell. While such a model is simple to implement, it ignores many intrinsic and im-
portant relationships existing in urban data. For example, a grid structure may lose
the information of road connectivity in the underlying traffic system of the city. In
many scenarios, instead, graph is an elegant choice to capture the intrinsic topolog-
ical information and knowledge in the data. Many urban system components can
be represented as graphs. Additional attributes may be associated with nodes and/or
edges. In this section, we introduce graph representations of various urban system
scenarios, which are summarized in Table 27.2. The application domains covered
include 1) Urban transportation and configuration planning, 2) Urban environment
monitoring, 3) Urban energy supply and consumption, 4) Urban event and anomaly
detection, and 5) Urban human behavior analysis.

1) Urban transportation and configuration planing. Modeling urban trans-
portation system as a graph is widely used in solving real-world urban intelligence
problems, e.g., traffic flow prediction (Xie et al, 2019b; Dai et al, 2020; Cui et al,
2019; Chen et al, 2019b; Song et al, 2020a; Zhang et al, 2020e; Zheng et al, 2020a;
Diao et al, 2019; Guo et al, 2019b; Li et al, 2018e; Yu et al, 2018a; Zhang et al,
2018e), parking availability problem (Zhang et al, 2020h), etc. The graphs are usu-
ally built based on the real-world road network. To solve the problem of traffic flow
prediction, in (Cui et al, 2019), the authors employ an undirected graph to predict
the traffic state, the nodes are the traffic sensing locations, e.g., sensor stations, road
segments, and the edges are the intersections or road segments connecting those
traffic sensing locations. Xie et al (2019b); Dai et al (2020) model the urban traffic
network as a directed graph with attributes to predict the traffic speed, the nodes
are the road segments, and the edges are the intersections. Road segment width,
length, and direction are the attributes of the nodes, and the type of intersection,
and whether there are traffic lights, toll gates are the attributes of the edges. For
urban configuration, Wu et al (2020c) incorporates a hierarchical GNN framework
to learn Road Network Representation in different levels. The nodes in the hierar-
chical graph include road segments, structural regions, and functional zones, and
the edges are intersections and hyperedges. There are some works about predicting
parking availability. Zhang et al (2020h) models the parking lots and the surround-
ing POIs and population features as a graph to predict the parking availability for
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Table 27.2: Graph representations in urban systems

Application domain Nodes Edges Examples

Transportation &
configuration

planning

Road segments Intersections

Traffic flow prediction
(Xie et al, 2019b)
(Dai et al, 2020)
(Cui et al, 2019)

(Chen et al, 2019b)
(Song et al, 2020a)
(Zhang et al, 2020e)
(Zheng et al, 2020a)

(Diao et al, 2019)
(Guo et al, 2019b)
(Li et al, 2018e)
(Yu et al, 2018a)

(Zhang et al, 2018e)

Functional zones Road connections Learning road network
representation (Wu et al, 2020c)

POIs Road connections

Parking availability prediction,
POI recommendation
(Zhang et al, 2020h)
(Chang et al, 2020a)

Environment
monitoring Monitoring sensors Proximity

Air quality inference
(Wang et al, 2020h)

(Li et al, 2017f)
Energy supply
& consumption Regulators Pipelines Gas pressure monitoring

(Yi and Park, 2020)

Event &
anomaly detection Urban regions Proximity

Traffic accident prediction
(Zhou et al, 2020g)
(Zhou et al, 2020h)

(Yu et al, 2021b)
Human behavior

analysis
Sessions,

locations, objects Event stream User behavior modeling
(Wang et al, 2020a)

Urban regions Proximity

Passenger demand prediction
(Wang et al, 2019o)
(Yi and Park, 2020)
(Geng et al, 2019)
(Bai et al, 2019a)
(Xie et al, 2016)

the parking lots. The nodes are the parking lots, and the edges are determined by
the connectivity between each two parking lots whose on-road distance is smaller
than a threshold. Context features, e.g., POI distribution, population, etc., are the
attributes of the nodes.

2) Urban environment monitoring system. People model the air quality mon-
itoring system as a graph to forecast the air quality in the urban area(Wang et al,
2020h; Li et al, 2017f). For example, Wang et al (2020h) proposed the PM2.5-GNN
to forecast the PM2.5 index in different locations. The nodes are locations deter-
mined by latitude, longitude, altitude, and there exists an edge between two nodes
if the distance and difference of altitudes between them are less than threshholds re-
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spectively (e.g., distance < 300 km and difference of altitudes < 1200 m). The node
attributes include Planetary Boundary Layer (PBL) height, K index, wind speed, 2m
temperature, relative humidity, precipitation, and surface pressure. Edge attributes
include wind speed of source node, distance between source and sink, wind direc-
tion of source node, and direction from source to sink.

3) Urban energy supply and consumption. GNN is also employed in analyz-
ing urban energy supply and consuming systems. For example, Yi and Park (2020)
proposed a framework to predict the gas pressure in the gas supply network. The
gas regulators are considered as the nodes, and the pipelines that connect every two
regulators are the edges.

4) Urban event and anomaly detection. Urban event and anomaly detection is a
hot topic in urban intelligence. People employ machine learning models to detect or
predict the events occurring in the urban area, e.g., traffic accident prediction(Zhou
et al, 2020g,h; Yu et al, 2021b). In (Zhou et al, 2020g), the authors proposed a
framework to predict traffic accident in different regions of the city. The urban area
is divided into subregions, i.e., grids, and if the traffic elements within two subre-
gions have strong correlations, there is a connection.

5) Urban human behavior analysis. Studying human behavior in urban region
can benefit people in many aspects, for example, demographic attribute prediction,
personalized recommendation, passenger demand prediction, etc. Some works pro-
posed GNN to study Human behavior modeling. Human behavior modeling is es-
sential for many real-world applications such as demographic attribute prediction,
content recommendation, and target advertising. In (Wang et al, 2020a), the authors
model human behavior via a tripartite graph. The nodes include user’s sessions, lo-
cations and items. There exists an edge between a session node and a location node if
the user started the session at this location. Similarly, there exists an edge between
a session node and an item node if the user interacted with this item within the
session. Each edge possesses a time attribute indicating the temporal signal of the
interaction between two nodes. Another application of analysing human behavior is
passenger demand prediction. Understanding human behavior in daily transits can
help improve the efficiency of urban transportation system. For example, predicting
the passenger demand in the ride-sharing system can help the ride-sharing company
and the drivers improve their operation efficiency. And in recent publications, many
researchers employ graph neural networks to solve the problem of predicting human
mobility (Wang et al, 2019o; Yi and Park, 2020; Geng et al, 2019; Bai et al, 2019a;
Xie et al, 2016), and usually the nodes of the graph are subregions of the city, and
the edges are usually defined based on spatial proximity.

27.1.4 Case Study 1: Graph Neural Networksin urban
configuration and transportation

Urban intelligence can help urban planners design urban configuration, and bene-
fit the urban transportation system from different perspectives, e.g., operation effi-
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Figure 27.1: CNN-based STGNN

ciency, safety, environmental protection, etc. To enable urban intelligence in urban
configuration and transportation planning, researchers developed practical machine
learning approaches, including graph neural networks (GNN), to deal with real-
world problems. In this section, we introduce some state-of-the-art (SOTA) designs
of GNN targeting on solving the real-world urban configuration and transportation
problems.

Urban traffic prediction. Predicting traffic status, e.g., speed, volume, is im-
portant in enabling urban intelligence. The traffic prediction problem is a typical
time-series prediction problem:

Definition 27.1. Urban traffic prediction problem. Given historical traffic obser-
vations and context features of the road network, predicting the traffic status (e.g.,
speed, flow, etc.) in future time slots over the road network.

To address the traffic prediction problem, Spatial-temporal Graph Neural Networks
(STGNN) are usually employed. The road segments are the nodes, and the traf-
fic status is the attributes of the nodes. The traffic status in different time slots
are corresponding to the temporal dynamics of the graph. Usually, graph convo-
lution operation is used to capture the spatial dependencies among the nodes, and
a 1D-convolution operation is then employed to capture the temporal dependencies
among different time slots. The framework of CNN-based STGNN is illustrated in
Fig.27.1. The spatial-temporal embeddings can be used to predict the traffic status.

Another design of STGNN is based on Recurrent Neural Networks (RNN),
which can also predict traffic status in Spatial-temporal graphs. Most RNN-based
approaches capture spatial-temporal dependencies by filtering inputs and hidden
states passed to a recurrent unit using graph convolution operations. The basic RNN
can be formulated in Eq. (27.1).

H(t) = s(WX (t) +UH(t�1) +b), (27.1)

where X (t) is the node feature matrix at time step t. H is the hidden state. W , U , and
b are the network parameters. Then, the STGNN based on RNN can be formulated
as Eq. (27.2):
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Figure 27.2: Hierarchical road network graph

H(t) = s(Gconv(X (t),A;W )+Gconv(H(t�1),A;U)+b), (27.2)

where Gconv(·) is the graph convolution operation, and A is the graph adjacency
matrix. Both designs of STGNN can be employed to predict the node attributes, i.e.,
traffic status, given the spatial-temporal graph of traffic.

Urban configuration. An urban road network is a vital component in urban con-
figuration. How to represent it is essential for many analyses and researches related
to real-world applications. As a real-world road network is a complex system with
hierarchical structures, long-range dependency among units, and functional roles, it
is challenging to design effective representation learning methods. The road network
representation learning problem can be defined like this:

Definition 27.2. Road network representation learning problem. Given a road
network, the target is to construct the corresponding graphs that can represent the
structure and topological information of the road network.

Benefit from the topology of graph, we can represent road network with hier-
archical graphs. In (Wu et al, 2020c), the authors propose to represent urban road
networks with a hierarchical graph with three levels, and the node in each level cor-
responds to road segments, structural region, and functional zone, respectively, as
illustrated in Fig.27.2. The structural region is the aggregation of some connected
road segments, which serves as some specific traffic roles, e.g., intersection, over-
pass. And functional zone is the aggregation of structural regions, which can repre-
sent some functional facilities in the city, e.g., transportation hub, shopping area. To
learn the hierarchical graph representation, the road segments are first represented
by contextual embedding, e.g., road type, lane number, segment length, etc. Then,
graph clustering and network reconstruction techniques are employed to form the
structural region graph. And vehicle trajectory data is employed to capture the func-
tional zones over structural regions.
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Figure 27.3: Example GNN framework for traffic accident prediction.

27.1.5 Case Study 2: Graph Neural Networks in urban anomaly
and event detection

Public safety and security in the urban area always attracts people’s concerns. The
availability of different data enables us to learn from history how to deal with public
safety problems, e.g., traffic accidents, crime, large events, pandemic, etc., and we
can use the data to detect and predict abnormal events.

Traffic accident prediction. Traffic accident prediction is of great significance
to improve the safety of the road network. Although “accident” is a word related to
“randomness”, there exist a significant correlation between the occurrence of traffic
accidents and the surrounding environmental features, e.g., traffic flow, road net-
work structure, weather, etc. Thus, machine learning approaches, like GNN, can be
employed to predict or forecast traffic accidents over the city, which can help enable
urban intelligence.

The problem of traffic accident prediction is as follows:

Definition 27.3. Traffic accident prediction problem. Given the road network data
and the historical environmental features, the target is to predict the traffic accident
risk over the city in the future.

The environmental features include the traffic conditions, surrounding POIs, etc. In
recent publications (Zhou et al, 2020g,h; Yu et al, 2021b), GNN is employed to
solve this problem.

The graphs in solving traffic accident problem are usually constructed based on
dividing the urban area into grids, and each grid is considered as a node. If the traffic
conditions between two nodes have a strong correlation, there is an edge between
them. The context environmental features are the attributes with each grid. After the
graphs are constructed in different historical time slots, graph convolutional neural
networks (GCNs) are usually used to extract the hidden embedding in each time
slot. Then, methods dealing with time-series inputs can be employed to capture
the temporal dependencies, e.g., RNN-based neural networks. Finally, the spatial-
temporal information is used to predict traffic accident risk over the city. Overall,
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Figure 27.4: Example STGNN framework for passenger demand prediction.

the solution framework can be considered as an STGNN as illustrate in Fig. 27.3.
For more details, please refer to (Zhou et al, 2020g,h; Yu et al, 2021b).

27.1.6 Case Study 3: Graph Neural Networks in urban human
behavior inference

Human behavior analysis plays an important role in enabling urban intelligence,
for example, studying the behavior of drivers can help improve the efficiency of
urban transportation system, analysing passenger behaviors can help improve the
operation efficiency of the drivers in taxi or ride-hailing services, and understanding
user behavior pattern can help improve personal recommendation of commercial
items, which will benefit the urban economy. In this section, we demonstrate how
GNN works in analyzing urban human behaviors via two real-world applications,
i.e., passenger demand prediction and user behavior modeling.

Passenger demand prediction. Passenger demand prediction is mostly con-
ducted at the region-level, i.e., the urban area is divided into small grids. The prob-
lem can be defined as follows:

Definition 27.4. Passenger demand prediction problem. Given the historical de-
mands and context features distributions, the task is to predict the passenger demand
in each region.

Different from most traffic graphs which construct the graphs with road segments as
nodes, here in passenger demand prediction problem, people usually construct the
graph with grids as the nodes. The edges, i.e., the correlations between each pair of
nodes, are determined by spatial proximity, similarity of contextual environment, or
road network connectivity for distant grids.

Spatial-temporal Graph Neural Networks (STGNN) are the most popular GNN
models employed in predicting passenger demand. In (Geng et al, 2019), the au-
thors propose the spatiotemporal multi-graph convolution network (ST-MGCN) to
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predict the passenger demand in the ride-hailing service. The overall framework
can be illustrated as in Fig.27.4. First, multiple graphs are constructed based on dif-
ferent aspects of relationships between each two grids, i.e., proximity, functional
similarity, and transportation connectivity. Then, a RNN is used to aggregate obser-
vations in different times considering the global contextual information. After that,
GCN is used to model the non-Euclidean correlations among regions. Finally, the
aggregated embeddings are used to predict the passenger demand over the city.

User behavior modeling. Modeling human behavior is important for many real-
world applications, e.g., demographic attribute prediction, content recommendation,
and target advertising, etc. Studying human behavior in the urban scenario can ben-
efit urban intelligence in many aspects, e.g., economy, transportation, etc. Here,
we introduce an example of modeling spatial-temporal user behavior with tripartite
graphs (Wang et al, 2020a).

Take the urban user online browsing behavior as an example, the spatial-temporal
user behavior can be defined on a set of users U , a set of sessions S, a set of items
V , and a set of locations L. Each user’s behavior log can be represented by a set of
session-location tuples, and each session contains multiple item-timestamp tuples.
Then a user’s spatial-temporal behavior can be captured via a tripartite graph as
illustrated in Fig.27.5. The nodes of this tripartite graph include user’s sessions S,
locations L, and items V . The edges include session-item edges and session-location
edges.

Figure 27.5: Spatial-temporal user behavior graph

To extract the user representation from each user’s spatial-temporal behavior
graph, GNN can be employed. The idea is to extract session embeddings from the
items within each session, and RNN can be employed to aggregate the information
of items. Then session embeddings are further aggregated into temporal embeddings
of different time span, e.g., day, week. Also, the session embeddings and locations
are composed to produce the spatial embeddings. Last, the spatial and temporal em-
beddings are fused into one embedding which can represent the user’s behavior. For
more details, we would like to refer you to (Wang et al, 2020a).
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27.1.7 Future Directions

It is inspiring that GNNs have obtained significant achievements on urban intelli-
gence. For future research, we envision that there exist several potential directions
as following.

Interpretability of the GNNs model on urban intelligence. The applications
of GNNs on urban intelligence are closely related to real-world problems. Besides
improving the performance of the GNNs model, it is necessary to enhance the in-
terpritability of the GNNs model. For example, in the application predicting traffic
flow, it is important to identify hidden factors (e.g., structure of road network) that
can affect the traffic flow. These hidden factors may also help urban planners better
design road network to balance the traffic flow.

Recent advances in interpretable AI and machine learning research have led to
the development of numerous intrinsic or post-hoc interpretable graph neural net-
work models (Huang et al, 2020c). However, few of them are designed for GNNs
on urban problems. Designing interpretable urban GNNs is non-trivial due to the
unique properties of urban big data. For example, urban data are usually heteroge-
neous, i.e., the interpretation of learned relationships between the input features and
target variables vary over space. For example, the risk factors for traffic accidents
may shift when moving from a densely populated area to a non-residential area.
Also, the interpretation model of GNN at nearby locations (e.g., neighboring nodes)
share similarities due to the auto-correlation of spatial data (Pan et al, 2020b). These
factors should be considered when designing interpretable urban GNNs.

New applications for GNNs on urban intelligence. As introduced above,
GNNs have demonstrated their effectiveness and efficiency in many applications
domains in urban intelligence, e.g., transportation, environment, energy, safety, hu-
man behavior. There exist potential applications of GNNs on urban scenario, such
as, improving urban power (electricity) supply, contact tracing of patients of infec-
tious diseases (e.g., COVID-19), and modeling responses to complex environmental
and climate events (e.g., flood, Hurricane, etc).
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Editor’s Notes: Urban intelligence covers a wide range of macro-scale
physical networks such as transportation networks and power grids. They
are typical cases of spatial networks, which are networks whose nodes and
edges are embedded in space probably under spatial constraints (e.g., pla-
narity). So it is not a surprise that urban intelligence could largely benefit
from deep learning techniques for spatial data and network data. Differ-
ent from most of the application domains introduced in Chapters 19-27,
there are usually well-designed computational models for many subareas
in urban intelligence, so it is important to explore how deep graph learning
techniques can contribute and compensate for the weakness of the existing
strategies.




