
Chapter 26
Graph Neural Networks in Anomaly Detection

Shen Wang, Philip S. Yu

Abstract Anomaly detection is an important task, which tackles the problem of dis-
covering “different from normal” signals or patterns by analyzing a massive amount
of data, thereby identifying and preventing major faults. Anomaly detection is ap-
plied to numerous high-impact applications in areas such as cyber-security, finance,
e-commerce, social network, industrial monitoring, and many more mission-critical
tasks. While multiple techniques have been developed in past decades in address-
ing unstructured collections of multi-dimensional data, graph-structure-aware tech-
niques have recently attracted considerable attention. A number of novel techniques
have been developed for anomaly detection by leveraging the graph structure. Re-
cently, graph neural networks (GNNs), as a powerful deep-learning-based graph rep-
resentation technique, has demonstrated superiority in leveraging the graph structure
and been used in anomaly detection. In this chapter, we provide a general, compre-
hensive, and structured overview of the existing works that apply GNNs in anomaly
detection.

26.1 Introduction

In the era of machine learning, sometimes, what stands out in the data is more
important and interesting than the normal. This branch of task is called anomaly
detection, which concentrates on discovering “different from normal” signals or
patterns by analyzing a massive amount of data, thereby identifying and prevent-
ing major faults. This task plays a key on in several high-impact domains, such as
cyber-security (network intrusion or network failure detection, malicious program

Shen Wang
Department of Computer Science, University of Illinois at Chicago, e-mail: swang224@uic.
edu

Philip S. Yu
Department of Computer Science, University of Illinois at Chicago, e-mail: psyu@uic.edu

557

swang224@uic.edu
swang224@uic.edu
psyu@uic.edu


558 Shen Wang, Philip S. Yu

detection), finance (credit card fraud detection, malicious account detection, cashout
user detection, loan fraud detection), e-commerce (reviews spam detection), social
network (key player detection, anomaly user detection, real money trading detec-
tion), and industrial monitoring (fault detection).

In the past decades, many techniques have been developed for anomaly detec-
tion by leveraging the graph structure, a.k.a. graph-based anomaly detection. Unlike
non-graph anomaly detection, they further take the inter-dependency among each
data instance into consideration, where data instances in a wide range of disciplines,
such as physics, biology, social sciences, and information systems, are inherently re-
lated to one another. Compare to the non-graph-based method, the performance of
the graph-based method is greatly improved. Here, we provide an illustrative ex-
ample of malicious program detection in the cyber-security domain in Figure 26.1.
In a phishing email attack as shown in Figure 26.1, to steal sensitive data from the
database of a computer/server, the attacker exploits a known venerability of Mi-
crosoft Office by sending a phishing email attached with a malicious .doc file to
one of the IT staff of the enterprise. When the IT staff member opens the attached
.doc file through the browser, a piece of a malicious macro is triggered. This ma-
licious macro creates and executes a malware executable, which pretends to be an
open-source Java runtime (Java.exe). This malware then opens a backdoor to the ad-
versary, subsequently allowing the adversary to read and dump data from the target
database via the affected computer. In this case, signature-based or behavior-based
malware detection approaches generally do not work well in detecting the mali-
cious program in our example. As the adversary can make the malicious program
from scratch with binary obfuscation, signature-based approaches would fail due
to the lack of known malicious signatures. Behavior-based approaches may not be
effective unless the malware sample has previously been used to train the detection
model. It might be possible to detect the malicious program using existing host-
level anomaly detection techniques. These host-based anomaly detection methods
can locally extract patterns from process events as the discriminators of abnormal
behavior. However, such detection is based on observations of single operations,
and it sacrifices the false positive rate to detect the malicious program. For exam-
ple, the host-level anomaly detection can detect the fake “Java.exe” by capturing the
database read. However, a Java-based SQL client may also exhibit the same opera-
tion. If we simply detect the database read, we may also classify normal Java-based
SQL clients as abnormal program instances and generate false positives. In the en-
terprise environment, too many false positives can lead to the alert fatigue problem,
causing cyber-analysts to fail to catch up with attacks. To accurately separate the
database read of the malicious Java from the real Java instances, we need to con-
sider the higher semantic-level context of the two Java instances. As shown in Figure
??, malicious Java is a very simple program and directly accesses the database. On
the contrary, a real Java instance has to load a set of .DLL files in addition to the
database read. By comparing the behavior graph of the fake Java instance with the
normal ones, we can find that it is abnormal and precisely report it as a malicious
program instance. Thus, leveraging the graph helps to identify the anomaly data
instances.



26 Graph Neural Networks in Anomaly Detection 559

phishing
 email

.doc create
execute

Java.exe

IT Laptop

dump

Web
Service

Whole Execution Environment

Database

Malicious Java Real Java

MSVCRT.DLL RPCRT4.DLL

Database

NTDLL.DLL

USP10.DLLUSER32.DLL

Figure 26.1: An illustrative example of malicious program detection in the cyber-
security domain. The left side shows an example of a phishing email attack: the
hacker creates and executes a malware executable, which pretends to be an open-
source Java runtime (Java.exe); this malware then opens a backdoor to the adversary,
subsequently allowing the adversary to read and dump data from the target database
via the affected computer. The right side demonstrates the behavior graph of the
malicious Java.exe vs. normal Java runtime.

Specifically, the benefit of graph-based method is four-folded:

• Inter-dependent Property – Data instances in a wide range of disciplines, such
as physics, biology, social sciences, and information systems, are inherently
related to one another and can form a graph. These graph structures can provide
additional side information to identify the anomalies in addition to the attributes
of each data instance.

• Relational Property – The anomaly data instances sometimes can exhibit them-
selves as relational, e.g., in the fraud domain, the context of the anomaly data
instance has a high probability of being abnormal; the anomaly data instance
is closely related to a group of data instances. If we identify one anomaly data
instance in the graph, some other anomaly data instances based on it can be
detected.

• Fruitful Data Structure – The graph is a data structure encoding fruitful in-
formation. The graph consists of nodes and edges, enabling the incorporation
of node and edge attributes/types for anomaly data instance identification. Be-
sides, multiple paths exist between each pair of data instances, which allows the
relation extraction in different ranges.

• Robust Data Structure – The graph is a more adversarially robust data structure,
e.g., attacker or fraudster usually can only attack or fraud the specific data in-
stance or its context and have a limited global view of the whole graph. In this
case, the anomaly data instance is harder to fit into the graph as well as possible.

Recent years have witnessed a growing interest in developing deep-learning-
based algorithms on the graph, including unsupervised methods (Grover and Leskovec,
2016; Liao et al, 2018; Perozzi et al, 2014) and supervised methods (Wang et al,
2016, 2017e; Hamilton et al, 2017b; Kipf and Welling, 2017b; Veličković et al,
2018). Among these deep-learning-based algorithms on the graph, the graph neural
networks (GNNs) (Hamilton et al, 2017b; Kipf and Welling, 2017b; Veličković et al,



560 Shen Wang, Philip S. Yu

2018), as powerful deep graph representation learning techniques, have demon-
strated superiority in leveraging the graph structure. The basic idea is to aggregate
information from local neighborhoods in order to combine the content feature and
graph structures to learn the new graph representation. In particular, GCN (Kipf
and Welling, 2017b) leverages the “graph convolution” operation to aggregate the
feature of one-hop neighbors and propagate multiple-hop information via the iter-
ative “graph convolution”. GraphSage (Hamilton et al, 2017b) develops the graph
neural network in an inductive setting, which performs neighborhood sampling and
aggregation to generate new node representation efficiently. GAT (Veličković et al,
2018) further incorporates attention mechanism into GCN to perform the attentional
aggregation of the neighborhoods. Given the importance of graph-based anomaly
detection and the success of graph neural networks, both academia and industry
are interested in applying GNNs to tackle the problem of anomaly detection. In re-
cent years, some researchers have successfully applied GNNs in several important
anomaly detection tasks. In this book chapter, we summarize different GNN-based
anomaly detection approaches and provide taxonomies for them according to var-
ious criteria. Despite the more than 10+ papers published in the last three years,
several challenges remain unsolved until now, which we summarize and introduce
in this chapter as below.

• Issues Unlike GNNs applications in other domains, the GNNs applications in
anomaly detection have several unique issues, which comes from data, task,
and model. We briefly discuss and summarize them to provide a comprehensive
understanding of the difficulties of the problems.

• Pipeline There are various GNN-based anomaly detection works. It is challeng-
ing and time-consuming to understand the big pictures of all these works. To
facilitate an easy understanding of existing research on this line, we summarize
the general pipeline of GNN-based anomaly detection approaches.

• Taxonomy There are already several works in the domain of GNN-based anomaly
detection. Compared with other GNN applications, GNN-based anomaly detec-
tion is more complicated due to unique challenges and problem definitions. To
provide a quick understanding of the similarity and differences between exist-
ing works, we list some representative works and summarize novel elaborated
taxonomies according to various criteria.

• Case Studies We provide the case studies of some representative GNN-based
anomaly detection approaches.

The rest of this chapter is organized as follows. Section 26.2 discusses and sum-
marizes the issues of the GNN-based anomaly detection. Section 26.3 provides the
unified pipeline of the GNN-based anomaly detection. Section 26.4 provides the
taxonomies of existing GNN-based anomaly detection approaches. Section 26.5
provides the case studies of some representative GNN-based anomaly detection ap-
proaches. In the last section, we provide the discussion and future directions.



26 Graph Neural Networks in Anomaly Detection 561

26.2 Issues

In this section, we provide a brief discussion and summary of the issues in GNN-
based anomaly detection. In particular, we group them into three: (i) data-specific
issues, (ii) task-specific issues, and (iii) model-specific issues.

26.2.1 Data-specific issues

As the anomaly detection systems usually work with real-world data, they demon-
strate high volume, high dimensionality, high heterogeneity, high complexity, and
dynamic property.

High Volume – With the advance of information storage, it is much easier to
collect large amounts of data. For example, in an e-commerce platform like Xianyu,
there are over 1 billion second-hand goods published by over ten millions users;
in an enterprise network monitoring system, the system event data collected from
a single computer system in one day can easily reach 20 GB, and the number of
events related to one specific program can easily reach thousands. It is prohibitively
expensive to perform the analytic task on such massive data in terms of both time
and space.

High Dimensionality – Also, benefit from the advance of the information stor-
age, rich amount of information is collected. It results in high dimensionality of
the attributes for each data instance. For example, in an e-commerce platform like
Xianyu, different types of attributes are collected for each data instance, such as
user demographics, interests, roles, as well as different types of relations; in an en-
terprise network monitoring system, each collected system event is associated with
hundreds of attributes, including information of involved system entities and their
relationships, which causes the curse of dimensionality.

High Heterogeneity – As rich types of information are collected, it results in
high heterogeneity of the attributes for each data instance: the feature of each data
instance can be multi-view or multi-sourced. For example, in an e-commerce plat-
form like Xianyu, multiple types of data are collected from the user, such as personal
profile, purchase history, explore history, and so on. Nevertheless, multi-view data
like social relations and user attributes have different statistical properties. Such het-
erogeneity poses a great challenge to integrate multi-view data.

High Complexity – As we can collect more and more information, the collected
data is complex in content: it can be categorical or numerical, which increases the
difficulty of leveraging all the contents jointly.

Dynamic Property – The data collection is usually conducted every day or con-
tinuously. For example, billions of credit card transactions are performed every day;
billions of click-through traces of web users are generated each day. This kind of
data can be thought of as streaming data, and it demonstrates dynamic property.

The above data-specific issues are general and apply to all kinds of data. So
we also need to discuss the graph-data-specific issues, including relational prop-



562 Shen Wang, Philip S. Yu

erty, graph heterogeneity, graph dynamic, variety of definitions, lack of intrinsic
distance/similarity metrics, and search space size.

Relational Property – The relational property of the data makes it challenging to
quantify the anomalousness of graph objects. While in traditional outlier detection,
the objects or data instances are treated as independent and identically distributed
(i.i.d.) from each other, the data instances in graph data are pair-wise correlated.
Thus, the “spreading activation” of anomalousness or “guilt by associations” needs
to be carefully accounted for. For example, the cash-out users not only have ab-
normal features, but also behavior abnormally in interaction relations. They may
simultaneously have many transactions and fund transfer interactions with particu-
lar merchants, which is hard to be exploited by traditional feature extraction.

Graph Heterogeneity – Similar to the general data-specific issues of high het-
erogeneity, the graph instance type, and relation type are usually heterogeneous.
For example, in a computer system graph, there are three types of entities: process
(P), file (F), and INETSocket (I) and multiple types of relations: a process forking
another process (P!P), a process accessing a file (P!F), a process connecting to
an Internet socket (P!I), and so on. Due to the heterogeneity of entities (nodes)
and dependencies (edges) in a heterogeneous graph, the diversities between differ-
ent dependencies vary dramatically, significantly increasing the difficulty of jointly
leveraging these nodes and edges.

Graph Dynamic – As the data are collected periodically or continuously, the
constructed graph also demonstrates the dynamic property. It is challenging to de-
tect the anomaly due to its dynamic nature. Some anomalous operations show some
explicit patterns but try to hide them in a large graph, while others are with implicit
patterns. Take an explicit anomaly pattern in a recommender system as an exam-
ple. As anomalous users usually control multiple accounts to promote the target
items, the edges between these accounts and items may compose a dense subgraph,
which emerges in a short time period. In addition, although the accounts which
involve the anomaly perform anomalous operations sometimes, these accounts per-
form normally most of the time, which hides their long-term anomalous behavior
and increases the difficulty of detection.

Variety of Definitions – The definitions of anomalies in graphs are much more
diverse than in traditional outlier detection, given the rich representation of graphs.
For example, novel types of anomalies related to graph substructures are of interest
for many applications, e.g., money-laundering rings in trading networks.

Lack of Intrinsic Distance/Similarity Metrics – The intrinsic distance/similarity
metrics are not clear. For example, in real computer systems, given two programs
with thousands of system events related to them, it is a difficult task to measure their
distance/similarity.

Search Space Size – The main issue associated with more complex anomalies
such as graph substructures is that the search space is huge, as in many graph-
theoretical problems associated with graph search. The enumeration of possible
substructures is combinatorial, making the problem of finding out the anomalies
a much harder task. This search space is enlarged even more when the graphs are
attributed as the possibilities span both the graph structure and the attribute space.



26 Graph Neural Networks in Anomaly Detection 563

As a result, the graph-based anomaly detection algorithms need to be designed not
only for effectiveness but also for efficiency and scalability.

26.2.2 Task-specific Issues

Due to the unique characteristics of the anomaly detection task, the issues also come
from the problems, including labels quantity and quality, class imbalance and asym-
metric error, and novel anomalies.

Labels Quantity and Quality – The major issue of anomaly detection is that the
data often has no or very few class labels. It is unknown which data is abnormal
or normal. Usually, it is costly and time-consuming to obtain ground-truth labels
from the domain expert. Moreover, due to the complexity of the data, the produced
label may be noisy and biased. Therefore, this issue limits the performance of the
supervised machine learning algorithm. What is more, the lack of true clean labels,
i.e., ground truth data, also makes the evaluation of anomaly detection techniques
challenging.

Class Imbalance and Asymmetric Error – Since the anomalies are rare and only
a small fraction of the data is excepted to be abnormal, the data is extremely imbal-
anced. Moreover, the cost of mislabeling a good data instance versus a bad instance
may change depending on the application and further could be hard to estimate
beforehand. For example, mis-predicting a cash-out fraudster as a normal user is es-
sentially harmful to the whole financial system or even the national security, while
mis-predicting a normal user as a fraudster could cause customer loss fidelity. There-
fore, the class imbalance and asymmetric error affect the machine-learning-based
method seriously.

Novel Anomalies – In some domain, such as fraud detection or malware detec-
tion, the anomalies are created by the human. They are created by analyzing the
detection system and designed to be disguised as a normal instance to bypass the
detection. As a result, not only should the algorithms be adaptive to changing and
growing data over time, they should also be adaptive to and be able to detect novel
anomalies in the face of adversaries.

26.2.3 Model-specific Issues

Apart from data-specific and task-specific issues, it is also challenging to apply the
graph neural network directly to anomaly detection task sdue to its unique model
properties, such as homogeneous focus and vulnerability.

Homogeneous Focus – Most graph neural network models are designed for ho-
mogeneous graph, which considers a single type of nodes and edges. In many real-
world applications, data can be naturally represented as heterogeneous graphs. How-
ever, traditional GNNs treat different features equally. All the features are mapped



564 Shen Wang, Philip S. Yu

and propagated together to get the representations of nodes. Considering that the
role of each node is just a one-dimensional feature in the high dimensional feature
space, there exist more features that are not related to the role, e.g., age, gender, and
education. Thus the representation of applicants with neighbors of different roles
has no distinction in representation space after neighbor aggregation, which causes
the traditional GNNs to fail.

Vulnerability – Recently theoretical studies prove the limitations and vulnerabil-
ities of GNNs, when graphs have noisy nodes and edges. Therefore, a small change
to the node features may cause a dramatic performance drop and failing to tackle
the camouflage, where fraudsters would sabotage the GNN-based fraud detectors.

26.3 Pipeline

In this section, we introduce the standard pipeline of the GNN-based anomaly detec-
tion. Typically, GNN-based anomaly detection methods consist of three important
components, including graph construction and transformation, graph representation
learning, and prediction.

26.3.1 Graph Construction and Transformation

As discussed in the previous section, a real-world anomaly detection system has
some data-specific issues. Therefore, it requires data analysis on the raw data to ad-
dress them. Then the graph can be constructed to capture the complex interactions
and eliminate the data redundancies. Based on the type of the data instance and
relations, the graph can be constructed as a homogeneous graph or heterogeneous
graph, where a homogeneous graph only has a single-typed data instance and rela-
tion, and a heterogeneous graph has multi-typed data instances and relations. Based
on the availability of the timestamp, the graph can be constructed as a static graph
or a dynamic graph, where a static graph refers to the graph that has fixed nodes
and edges, and a dynamic graph refers to the graph that has nodes and/or edges
change over time. Based on the availability of the node and/or edge attributes, the
constructed graph can be a plain graph or an attributed graph, where the plain graph
only contains the structure information and the attributed graph has attributes on
nodes and/or edges.

When the constructed graph is heterogeneous, simply aggregating neighbors can-
not capture the semantic and structural correlations among different types of enti-
ties. To address the graph heterogeneity issue, a graph transformation is performed
to transform the heterogeneous graph to a multi-channel graph guided by the meta-
paths, where a meta-path (Sun et al, 2011) is a path that connects entity types via
a sequence of relations over a heterogeneous network. For example, in a computer
system, a meta-path can be the system events (P!P, P!F, and P!I), with each



26 Graph Neural Networks in Anomaly Detection 565

one defining a unique relationship between two entities. The multi-channel graph
is a graph with each channel constructed via a certain type of meta-path. Formally,
given a heterogeneous graph G with a set of meta-paths M = {M1, ...,M|M |}, the
transformed multi-channel network Ĝ is defined as follows:

Ĝ = {Gi|Gi = (Vi,Ei,Ai), i = 1,2, ..., |M |)} (26.1)

where Ei denotes the homogeneous links between the entities in Vi, which are con-
nected through the meta-path Mi. Each channel graph Gi is associated with an adja-
cency matrix Ai. |M | indicates the number of meta-paths. Notice that the potential
meta-paths induced from the heterogeneous network can be infinite, but not every-
one is relevant and useful for the specific task of interest. Fortunately, there are some
algorithms (Chen and Sun, 2017) proposed recently for automatically selecting the
meta-paths for particular tasks.

26.3.2 Graph Representation Learning

After the graph is constructed and transformed, graph representation learning is
conducted to get the proper new representation of the graph. Generally GNNs
are built by stacking seven types of basic operations, including neural aggrega-
tor function AGG(), linear mapping function MAPlinear(), nonlinear mapping func-
tion MAPnonlinear(), multilayer perceptron function MLP(), feature concatenation
CONCAT (), attentional feature fusion COMBatt , and readout function Readout().
Among these operations, linear mapping function, nonlinear mapping function, mul-
tilayer perceptron function, feature concatenation, and attentional feature fusion are
typical operations used in traditional deep learning algorithms. Their formal de-
scriptions are described as follows:

Linear Mapping Function MAPlinear():

MAPlinear(x) = Wx (26.2)

where x is the input feature vector, and W is the trainable weight matrix.
Nonlinear Mapping Function MAPnonlinear():

MAPnonlinear(x) = s(Wx) (26.3)

where x is the input feature vector, W is the trainable weight matrix, and s() repre-
sents the non-linear activation function.

Multilayer Perceptron Function MLP():

MLP(x) = s(Wk · · ·s(W1x)) (26.4)



566 Shen Wang, Philip S. Yu

where x is the input feature vector, Wi with i = 1, ...,k is the trainable weight ma-
trix, k indicates the number of layers, and s() represents the non-linear activation
function.

Feature Concatenation CONCAT ():

CONCAT (x1, · · ·xn) = [x1, · · ·xn] (26.5)

where n indicates the number of the features.
Attentional Feature Fusion COMBatt():

COMBatt(x1, · · ·xn) =
n

Â
i=1

so f tmax(xi)xi (26.6)

so f tmax(xi) =
exp(MAP(xi))

Ân
j=1 exp(MAP(x j))

(26.7)

where MAP() can be linear or nonlinear.
Different from traditional deep learning algorithm, the GNNs have its unique

operation–neural aggregation function AGG(). Based on the level of object to ag-
gregate, it can be categorized into three specific types: node-wise neural aggregator
AGGnode(), layer-wise neural aggregator AGGlayer(), and path-wise neural aggrega-
tor AGGpath().

Node-wise Neural Aggregator AGGnode() is the GNN module that aims to aggre-
gate the node neighborhoods, which can be described as follows,

h(i)(k)
v = AGGnode(h

(i)(k�1)
v ,{h(i)(k�1)

u }u2N i
v
) (26.8)

where i is meta-path (relation) indicator, k 2 {1,2, ...K} is the layer indicator, h(i)(k)
v

is the feature vector of node v for relation Mi at the k-th layer, N i
v indicates the

neighbourhoods of node v under the relation Mi. Based on the way the the node
neighborhoods are aggregated, typically, the node-level neural aggregator can be
GCN AGGGCN() (Kipf and Welling, 2017b), GAT AGGGAT () (Veličković et al,
2018) or Message-Passing AGGMPNN() (Gilmer et al, 2017). For the GCN and GAT,
the formulations can be described by Equation 8. While for the Message-Passing,
the edges are also used during the node-level aggregation. Formally, it can be de-
scribed as follows,

h(i)(k)
v = AGGnode(h

(i)(k�1)
v ,{h(i)(k�1)

v ,h(i)(k�1)
u ,h(i)(k�1)

vu }u2N i
v
) (26.9)

where h(i)(k�1)
vu denotes the edge embedding between the target node v and its neigh-

bor node u, and {} indicates a fusion function to combine the target node, its neigh-
bor node and the corresponding edge between them.

Layer-wise Neural Aggregator AGGlayer() is the GNN module that aims to ag-
gregate the context information from different hops. For example, if layer num-
ber k = 2, the GNN gets 1-hop neighborhood information, and if layer number



26 Graph Neural Networks in Anomaly Detection 567

k = K + 1, the GNN gets K-hop neighborhood information. The larger the k is, the
more global information the GNN obtains. Formally, this function can be described
as follows,

l(i)(k)v = AGGlayer(l
(i)(k�1)
v ,h(i)(k)

v ) (26.10)

where l(i)(k)v is the aggregated representation of (k� 1)�hop neighborhood node v
for relation Mi at the k-th layer.

Path-wise Neural Aggregator AGGlayer() is the GNN module that aims to ag-
gregate the context information from different relations. Generally, the relation can
be described by meta-path (Sun et al, 2011) based contextual search. Formally, this
function can be described as follows,

p(i)
v = l(i)(K)

v (26.11)

pv = AGGpath(p
(1)
v , ...p(|M |)

v ) (26.12)

where p(i)
v is the aggregated final layer representation of node v for relation Mi.

Then the final node representation is described by the fusion representation from
different meta-paths (relations) as follows,

h( f inal)
v = pv (26.13)

Based on the task, we can also compute the graph representation by performing
readout function Readout() to aggregate all the nodes’ final representations, which
can be described as follows,

g = Readout(h( f inal)
v1 , ...h( f inal)

vV ) (26.14)

Typically, we can obtain different levels of graph representations, including node-
level, edge-level, and graph-level. The node-level and edge-level representation are
the most preliminary representations, which can be learned via graph neural net-
work. The graph-level representation is a higher-level representation, which can be
obtained by performing the readout function to the node-level and edge-level repre-
sentations. Based on the target of the task, the specific level of graph representations
is fed to the next stage.

26.3.3 Prediction

After the graph representation is learned, they are fed to the prediction stage. De-
pends on the task and the target label, there are two types of prediction: classification
and matching. In the classification-based prediction, it assumes that enough labeled
anomaly data instances are provided. A good classifier can be trained to identify



568 Shen Wang, Philip S. Yu

if the given graph target is abnormal or not. As mentioned in the issues section,
there might be no or few anomaly data instances. In this case, the matching-based
prediction is usually used. If there are very few anomaly samples, we learn the rep-
resentation of them, and when the candidate sample is similar to one of the anomaly
samples, an alarm is triggered. If there is no anomaly sample, we learn the represen-
tation of the normal data instance. When the candidate sample is not similar to any
of the normal samples, an alarm is triggered.

26.4 Taxonomy

In this section, we provide the taxonomies of existing GNN-based anomaly detec-
tion approaches. Due to the variety of graph data and anomalies, the GNN-based
anomaly detection can have multiple taxonomies. Here we provided four types of
taxonomy in order to give a quickly understand of the similarity and difference
between existing works, including static/dynamic graph taxonomy, homogeneous/
heterogeneous graph taxonomy, plain/attributed graph taxonomy, object taxonomy,
and task taxonomy.

In task taxonomy, the exiting works can be categorized into GNN-based anomaly
detection in financial networks, GNN-based anomaly detection in computer net-
works, GNN-based anomaly detection in telecom networks, GNN-based anomaly
detection in social networks, GNN-based anomaly detection in opinion networks,
and GNN-based anomaly detection in sensor networks.

In anomaly taxonomy, the existing works can be categorized into node-level
anomaly detection, edge-level anomaly detection, and graph-level anomaly detec-
tion.

In static/dynamic graph taxonomy, the existing works can be categorized into
static GNN-based anomaly detection and dynamic GNN-based anomaly detection.

In homogeneous/heterogeneous graph taxonomy, the exiting works can be
categorized into homogeneous GNN-based anomaly detection and heterogeneous
GNN-based anomaly detection.

In plain/attributed graph taxonomy, the exiting works can be categorized into
plain GNN-based anomaly detection and attributed GNN-based anomaly detection.

In object taxonomy, the exiting works can be categorized into: classification-
based approach and matching-based approach.

We present our taxonomy with more details in Table 1.

26.5 Case Studies

In this section, we provide the case studies to give the details of some representative
GNN-based anomaly detection approaches.



26 Graph Neural Networks in Anomaly Detection 569

Table 26.1: Summary of GNN-based anomaly detection approaches.

Approach Year Venue Task Anomaly Static
Dynamic

Homogeneous
Heterogeneous

Plain
Attributed Model Object

GEM (Liu et al, 2018f) 2018 CIKM Malicious Account
Detection Node Static Heterogeneous Attributed

GCN,
Attention(path)

Classification

HACUD (Hu et al, 2019b) 2019 AAAI Cashout User
Detection Node Static Heterogeneous Attributed

GCN,
Attention( f eature,path)

Classification

DeepHGNN (Wang et al, 2019h) 2019 SDM Malicious Program
Detection Node Static Heterogeneous Attributed

GCN,
Attention(path)

Classification

MatchGNet (Wang et al, 2019i). 2019 IJCAI Malicious Program
Detection Graph Static Heterogeneous Attributed

GCN,
Attention(node,layer,path)

Matching

AddGraph (Zheng et al, 2019) 2019 IJCAI Malicious Connection
Detection Edge Dynamic Homogeneous Plain GCN,

GRUatt
Matching

SemiGNN (Wang et al, 2019b) 2019 ICDM Malicious Account
Detection Node Static Heterogeneous Attributed

GCN,
Attention(node,path)

Classification,
Matching

MVAN (Tao et al, 2019) 2019 KDD Real Money Trading
Detection Node Static Heterogeneous Attributed

GAT,
Attention(path,view)

Classification

GAS (Li et al, 2019a) 2019 CIKM Spam
Detection Edge Static Heterogeneous Attributed

MPNN,
Attention(message)

Classification

iDetective (Zhang et al, 2019a) 2019 CIKM Key Player
Detection Node Static Heterogeneous Attributed

GCN,
Attention(path)

Classification

GAL (Zhao et al, 2020f) 2020 CIKM Anomaly User
Detection Node Static Homogeneous Attributed GCN/GAT Matching

CARE-GNN (Dou et al, 2020) 2020 CIKM Fraud
Detection Node Static Heterogeneous Attributed

GCN,
Attention(node)

Classification

26.5.1 Case Study 1: Graph Embeddings for Malicious Accounts
Detection

Graph embeddings for malicious accounts detection (GEM) (Liu et al, 2018f) is the
first attempt to apply the GNN to anomaly detection. The aim of GEM is to detect
the malicious account at Alipay pay, a mobile cashless payment platform.

The graph constructed from the raw data is static and heterogeneous. The con-
strued graph G = (V ,E ) consists of 7 types of nodes, including account typed
nodes (U) and 6 types of device typed nodes (phone number (PN), User Machine ID
(UMID), MAC address (MACA), International Mobile Subscriber Identity (IMSI),
Alipay Device ID (APDID) and a random number generated via IMSI and IMEI
(TID), such that V = U [PN [UMID[MACA[ IMSI [APDID[T ID. To over-
come the heterogeneous graph challenge and make GNN applicable to the graph,
through graph transformation, GEM constructs a 6-channel graph Ĝ = {Gi|Gi =
(Vi,Ei,Ai), i = 1,2, ..., |M |} with |M | = 6. In particular, 6 types of edges are specif-
ically modeled to capture the edge heterogeneity, e.g., account connects phone num-
ber (U ! PN), account connects UMID (U !UMID), account connects MAC ad-
dress (U !MACA), account connects IMSI (U ! IMSI), account connects Alipay
Device ID (U ! APDID) and account connects TID (U ! T ID). As the activity
attributes are constructed, the constructed graph is an attributed graph. After the
graphs are constructed and transformed, GEM performs a graph convolutional net-
work to aggregate the neighborhood on each channel graph. As each channel graph
is treated as a homogeneous graph corresponding to a specific relation, GNN can be
directly applied to each channel graph.



570 Shen Wang, Philip S. Yu

During the graph representation learning stage, the node aggregated representa-
tion h(i)(k)

v is computed by performing a GCN aggregator AGGGCN(). To get the path
aggregated representation, it adopts the attentionally feature fusion to fuse the node
aggregated representation obtained in each channel graph G i. Besides, an activity
feature for each node is constructed, and it adds the linear mapping of this activity
feature to the attentional feature fusion of the path aggregated representations. For-
mally, the GNN operations can be described as follow.
Node-wise aggregation:

h(i)(k)
v = AGGnode(h

(i)(k�1)
v ,{h(i)(k�1)

u }u2N i
v
)

= AGGGCN(h(i)(k�1)
v ,{h(i)(k�1)

u }u2N i
v
)

(26.15)

Path-wise aggregation:

p(k)
v = MAPlinear(xv)+COMBatt(h(1)(k))

v , ...,h(|M |)(k)
v ) (26.16)

Layer-wise aggregation:

l(K)
v = p(K)

v (26.17)

Final node representation:

h( f inal)
v = l(K)

v (26.18)

where K indicates the number of the layers.
The object of GEM is classification. It feeds the learned account node embedding

to a standard logistic loss function.

26.5.2 Case Study 2: Hierarchical Attention Mechanism based
Cash-out User Detection

Hierarchical attention mechanism based cash-out user detection (HACUD) (Hu
et al, 2019b) applied the GNN to the fraud user detection at Credit Payment Ser-
vices platform, where the fraud user performs the cash-out fraud, that pursues cash
gains with illegal or insincere intent.

HACUD also constructs a static heterogeneous graph from the raw data. Specif-
ically, it consists of multiple types of nodes (i.e., User (U), Merchant (M), Device
(D)) with rich attributes and relations (i.e., fund transfer relation between users and
transaction relation between users and merchants). Different from the way GEM
deal with the graph heterogeneity issues, during the graph transformation stage,
HACUD only models the user nodes and considers two specific types of meta-paths
(relations) between pairwise of users, including User-(fund transfer)-User (UU) and
User-(transaction)-Merchant-(transaction)-User (UMU) and constructs a 2-channel
graph, such that Ĝ = {Gi|Gi = (Vi,Ei,Ai), i = 1, ..., |M |} with |M | = 2 and Vi 2U .



26 Graph Neural Networks in Anomaly Detection 571

The two selected meta-paths capture different semantics. For example, the UU path
connects users having fund transfers from one to another, while the UMU connects
users having transactions with the same merchants. Then each channel graph is ho-
mogeneous and can work with GNN directly. As the user attributes are available,
the constructed graph is attributed.

In the graph representation stage, the node-wise aggregation is performed to each
channel graph via a convolutional graph network. Different from GEM (Liu et al,
2018f), it adds and joins the user feature xv to the aggregated node representation
in an attentional way. Then the node-wise aggregation extends to a 3-step proce-
dure, including (a) initial node-wise aggregation, (b) feature fusion, and (c) feature
attention. After the initial aggregated node representation h̃(i)

v is computed vis GCN
AGGGCN(), it is fused with user feature xv through a feature fusion. Next, it per-
forms the feature attention. Since only 1-hop neighborhoods are considered, there is
no layer-wise aggregation, and the final node-wise aggregated representations h(i)

v
are fed to the path-wise aggregation directly. Formally, it can be described as fol-
lows,
Node-wise aggregation:

(a)Initial node-wise aggregation:

h̃(i)
v = AGGnode(h

(i)
v ,{h(i)

u }u2N i
v
)

= AGGGNN(h(i)
v ,{h(i)

u }u2N i
v
)

(26.19)

(b)Feature fusion:

f(i)v = MAPnonlinear(CONCAT (MAPlinear(h̃
(i)
v ),MAPlinear(xv))) (26.20)

(c)Feature attention:

a(i)
v = MAPnonlinear(MAPnonlinear(CONCAT (MAPlinear(xv), f(i)v )) (26.21)

h(i)
v = so f tmax(a(i)

v )
K

f(i)v (26.22)

Path-wise aggregation:

pv = AGGpath(h
(0)
v ,h(1)

v )

= COMBatt(h(0)
v ,h(1)

v )
(26.23)

Final node representation:

h( f inal)
v = MLP(pv) (26.24)

where
J

denotes the element-wise product. As only one-hop information is used,
there is no layer indicator k.



572 Shen Wang, Philip S. Yu

As same as GEM, the object of HACUD is classification. It feeds the learned
user node embedding to a standard logistic loss function.

26.5.3 Case Study 3: Attentional Heterogeneous Graph Neural
Networks for Malicious Program Detection

Attentional heterogeneous graph neural network for malicious program detection
(DeepHGNN) (Wang et al, 2019h) applied the GNN to the malicious program de-
tection in a computer system of an enterprise network.

The raw data is a large volume of system behavioral data with rich informa-
tion on program/process level events. A static heterogeneous graph is constructed to
model the program behaviors. Formally, given the program event data across many
machines within a time window (e.g., 1 day), a heterogeneous graph G = (V ,E ) is
constructed for the target program. V denotes a set of nodes, with each one repre-
senting an entity of three types: process (P), file (F), and INETSocket (I). Namely,
V = P[F [ I. E denotes a set of edges (vs,vd ,r) between the source entity vs and
destination entity vd with relation r. To address the heterogeneous graph challenges,
it takes three types of relations, including: (1) a process forking another process
(P!P), (2) a process accessing a file (P!F), and (3) a process connecting to an In-
ternet socket (P!I). Similar to GEM, DeepHGNN designs a graph transformation
module to transform the heterogeneous graph to a 3-channel graph guided by above
three meta-paths (relations), such that Ĝ = {Gi|Gi = (Vi,Ei,Ai), i = 1,2, ..., |M |}
with |M | = 3 and Vi = V . The attributes are constructed for each node. Since the
process node, file node, and INETSocket node has quite different attributes, the
graph statistic features x(i)(gstat)

v are constructed and act as the node attributes.
Similar to the GEM and HACUD, DeepHGNN also adopts the graph convo-

lutional network AGGGCN() for node-wise aggregation. Three layers are used in
order to capture program behavior within 3-hop contexts. Different from GEM and
HACUD, DeepHGNN uses the graph statistic node attributes as the initialization of
the node representation for each channel graph. After the three node-wise aggre-
gation and layer-wise aggregation, the node representations from different channel
graphs are fused via the attentional feature fusion as GEM and HACUD. Formally,
it can be described as follows,
Node-wise aggregation:

h(i)(0)
v = x(i)(gstat)

v (26.25)

h(i)(k)
v = AGGnode(h

(i)(k�1)
v ,{h(i)(k�1)

u }u2N i
v
)

= AGGGNN(h(i)(k�1)
v ,{h(i)(k�1)

u }u2N i
v
)

(26.26)

Layer-wise aggregation:



26 Graph Neural Networks in Anomaly Detection 573

l(i)(k)v = h(i)(k)
v (26.27)

Path-wise aggregation:

pv = COMBatt(l(1)(K))
v , ..., l(|M |)(K)

v ) (26.28)

Final node representation:

h( f inal)
v = pv (26.29)

The object of DeepHGNN is classification. However, it is different from GEM
and HACUD, which simply build single classifiers for all the samples. DeepHGNN
formulates the problem of program reidentification in malicious program detection.
The graph representation learning aims to learn the representation of the normal
target program, and each target program learns a unique classifier. Given a target
program with corresponding event data during a time window U = {e1,e2, ...} and a
claimed name/ID, the system checks whether it belongs to the claimed name/ID. If
it matches the behavior pattern of the claimed name/ID, the predicted label should
be +1; otherwise, it should be �1.

26.5.4 Case Study 4: Graph Matching Framework to Learn the
Program Representation and Similarity Metric via Graph
Neural Networks for Unknown Malicious Program
Detection

Graph matching framework to learn the program representation and similarity met-
ric via graph neural network (MatchGNet) (Wang et al, 2019i) is another GNN-
based anomaly detection approach for malicious program detection in a computer
system of an enterprise network. MatchGNet is different from DeepHGNN in five
aspects: (1) after the graph transformation, the resulted channel graph only keep the
target type node – process node, which is similar to HACUD, (2) the raw program
attributes are used as the program node representation initialization, (3) the GNN
aggregation is conducted hierarchically in node-wise, layer-wise, and path-wise, (4)
the anomaly target is the subgraph of the target program (5) the final graph repre-
sentation is fed to a similarity learning framework with contrastive loss to deal with
the unknown anomaly.

It follows a similar style to construct the static heterogeneous graph from system
behavioral data. In the graph transformation, it adopts three meta-paths (relations):
a process forking another process (P! P), two processes accessing the same file
(P F!P), and two processes opening the same internet socket (P I!P) with
each one defining a unique relationship between two processes. Based on them, a
3-channel graph is constructed from the the heterogeneous graph, such that Ĝ =
{Gi|Gi = (Vi,Ei,Ai), i = 1, ..., |M |} with |M | = 3 and Vi 2 P. Then the GNN can be



574 Shen Wang, Philip S. Yu

directly applied to each channel graph. As only process typed nodes are available,
we use the raw attributes of these process xv as the node representation initialization.

During the graph representation stage, a hierarchical attentional graph neural
network is designed, including node-wise attentional neural aggregator, layer-wise
dense-connected neural aggregator, and path-wise attentional neural aggregator. In
particular, the node-wise attentional neural aggregator aims to generate node em-
beddings by selectively aggregating the entities in each channel graph based on ran-
dom walk scores a i

(u). Layer-wise dense-connected neural aggregator aggregates the
node embeddings generated from different layers towards a dense-connected node
embedding. Path-wise attentional neural aggregator performs attentional feature fu-
sion of the layer-wise dense-connected representations. In the end, the final node
representation is used as the graph representation. Formally, it can be described as
follows,
Node-wise aggregation:

h(i)(0)
v = xv (26.30)

h(i)(k)
v = AGGnode(h

(i)(k�1)
v ,{h(i)(k�1)

u }u2N i
v
)

= MLP((1+ e(k))h(i)(k�1)
v + Â

u2N i
v

a i
(u)(:)h

(i)(k�1)
u )

(26.31)

Layer-wise aggregation:

l(i)(k)v = AGGlayer(h
(i)(0)
v , l(i)(1)

v , ...l(i)(k)v )

= MLP(CONCAT (h(i)(0)
v ; l(i)(1)

v ; ...l(i)(k)v ))
(26.32)

Path-wise aggregation:

pv = COMBatt(l(i)(K))
v , ..., l(|M |)(K)

v ) (26.33)

Final node representation:

h( f inal)
v = pv (26.34)

Final graph representation:

hGv = h( f inal)
v (26.35)

where k indicates the number of layers, and e is a small number. Different from
GEM, HACUD, and DeepHGNN, the object of MatchGNet is matching. The final
graph representation is fed to a similarity learning framework with contrastive loss
to deal with the unknown anomaly. During the training, P pairs of program graph
snapshots (Gi(1),Gi(2)), i 2 {1,2, ...P} are collected with corresponding ground truth
pairing information yi 2 {+1,�1}. If the pair of graph snapshots belong to the
same program, the ground truth label is yi = +1; otherwise, its ground truth label
is yi = �1. For each pair of program snapshots, a cosine score function is used to



26 Graph Neural Networks in Anomaly Detection 575

measure the similarity of the two program embeddings, and the output is defined as
follows:

Sim(Gi(1),Gi(2)) = cos((hGi(1)
,hGi(2)

))

=
hGi(1)

·hGi(2)

||hGi(1)
|| · ||hGi(2)

||
(26.36)

Correspondingly, our objective function can be formulated as:

` =
P

Â
i=1

(Sim(Gi(1),Gi(2))� yi)
2 (26.37)

26.5.5 Case Study 5: Anomaly Detection in Dynamic Graph Using
Attention-based Temporal GCN

Anomaly detection in dynamic graph using attention-based temporal GCN (Add-
Graph) (Zheng et al, 2019) is the first work that applies the GNN to solve the prob-
lem of anomaly edge detection in the dynamic graph. It focuses on the modeling of
the dynamic graph via GNN and performs anomaly connection detection in telecom
networks and social networks. The graphs are constructed from the edge stream
data, and the constructed graphs are dynamic, homogeneous, and plain.

The basic idea is to build a framework to describe the normal edges by using all
possible features in the graph snapshots in the training phase, including structural,
content, and temporal features. Then at the prediction stage, the matching objective
is used similar to MatchGNet. In particular, AddGraph applies GCN AGGGCN() to
compute the new current state of a node ct

v by aggregating its neighborhoods in the
current snapshot graph, which can be described as follows,

ct
v = AGGGCN(ht�1

v ) (26.38)

As the state of a node ct
v can be computed by aggregating the neighboring hidden

states in the previous timestamp t � 1, the node hidden states in a short window
w can be obtained and combined to get the short-term embedding st

v. In particular,
an attentional feature fusion is used to combine these node hidden states in a short
window, as follows,

st
v = COMBatt(ht�w

v , ...,ht�1
v ) (26.39)

Then short-term embedding st
v and current state ct

v are fed to GRU, a classic recur-
rent neural network, to compute the current hidden state that encoding the dynamics
within the graph. This stage can be described as follows:

ht
v = GRU(ct

v,st
v) (26.40)



576 Shen Wang, Philip S. Yu

The object of AddGraph is matching. The hidden state of the nodes at each times-
tamp are used to calculate the anomalous probabilities of an existing edge and a
negative sampled edge, and then feed them to a margin loss.

26.5.6 Case Study 6: GCN-based Anti-Spam for Spam Review
Detection

GCN-based anti-spam (GAS) (Li et al, 2019a) applies the GNN in the spam re-
view detection at the e-commerce platform Xianyu. Similar to previous works, the
constructed graph is static, heterogeneous and attributed, such that G = (U ,I ,E ).
There are two types of nodes: user nodes U and item nodes I . The edges E are a
set of comments. Different from previous works, the edges E are the anomalies tar-
gets. Moreover, as each edge represents a sentence, edge modeling is complicated,
and the number of edge types increases dramatically. To better capture the edge
representation, the message-passing-like GNN is used. The edge-wise aggregation
is proposed by concatenation of previous representation of the edge itself hk�1

iu and
corresponding user node representation hk�1

u , item node representation hk�1
i To get

the initial attributes of edge, the word2vec word embedding for each word in the
comments of the edges is extracted via the embedding function pre-training on a
million-scale comment dataset. Then the word embedding of each words in an edge
of comments w0,w1, ...wn is fed to TextCNN() function to get the comments em-
bedding h0

iu, which is used as the initial attributes of edge. Then the edge-wise ag-
gregation is defined as:
Edge-wise aggregation:

h0
iu = TextCNN(w0,w1, ...wn) (26.41)

hk
iu = MAPnonlinear(CONCAT (hk�1

iu ,hk�1
i ,hk�1

u )) (26.42)

On the other hand, the node-wise aggregation also needs to take the edges into con-
sideration. The node-wise aggregation is performed by attention feature fusion of
the target node and its connected edge followed by a non-linear mapping, which can
be described with (a) user node-wise aggregation, and (b) item node-wise aggrega-
tion as follows:
Node-wise aggregation:

(a)User node-wise aggregation:

hk
u = CONCAT (MAPlinear(hk�1

u ),MAPnonlinear(COMBatt(hk�1
u ,CONCAT (hk�1

iu ,hk�1
i )))

(26.43)
(b)Item node-wise aggregation:



26 Graph Neural Networks in Anomaly Detection 577

hk
i = CONCAT (MAPlinear(hk�1

i ),MAPnonlinear(COMBatt(hk�1
i ,CONCAT (hk�1

iu ,hk�1
u )))

(26.44)
where k is the layer indicator. The final edge representation is computed by con-
catenation of the raw edge embedding h0

iu, new edge embedding hK
iu, corresponding

new user node embedding hK
u , and corresponding new item node embedding hK

i as
follows:
Final edge representation:

h f inal
iu = CONCAT (h0

vu,hK
vu,hK

u ,hK
i ) (26.45)

The object of GAS is classification, and the final edge representation is fed to a
standard logistic loss function.

26.6 Future Directions

GNNs on anomaly detection is an important research direction, which leverages
multi-source, multi-view features extracted from both content and structure for
anomaly sample analysis and detection. It plays a key role in numerous high-impact
applications in areas such as cyber-security, finance, e-commerce, social network,
industrial monitoring, and many more mission-critical tasks. Due to the multiple is-
sues from data, model and task, it still needs a lot of effort in the field. The future
works are mainly lying in two perspectives: anomaly analysis and machine learning.

From an anomaly analysis perspective, there are still a lot of research questions.
How to define and identify the anomalies in the graph in the different tasks? How to
effectively convert the large-scale raw data to the graph? How to effectively leverage
the attributes? How to model the dynamic during the graph construction? How to
keep the heterogeneity during the graph construction? Recently, due to the data-
specific and task-specific issues, the applications of GNN-based anomaly detection
are still limited. There is still a lot of potential scenarios that can be applied.

From a machine learning perspective, lots of issues need to be addressed. How
to model the graph? How to represent the graph? How to leverage the context? How
to fuse the content and structure features? Which part of the structure to capture,
local or global? How to provide the model explainability? How to protect the model
from adversarial attacks? How to overcome the time-space scalability bottleneck.
Recently, lots of contributions have been made from the machine learning perspec-
tive. However, due to the unique characteristics of the anomaly detection problem,
which GNNs to use and how to apply GNNs are still critical questions. Further
work will also benefit from the new findings and new models in the graph machine
learning community.



578 Shen Wang, Philip S. Yu

Editor’s Notes: Graph neural networks for anomaly detection can be con-
sidered as a downstream task of graph representation learning, where the
long-term challenges in anomaly detection are coupled with the vulnera-
bility of graph neural networks such as scalability discussed in Chapter 6
and robustness discussed in Chapter 8. Graph neural networks for anomaly
detection also further benefits a wide range of downstream tasks in various
interesting, important, yet usually challenging areas such as anomaly detec-
tion in dynamic networks, spam review detection for recommender system,
and malware program detection, which are highly relevant to the topics in-
troduced in Chapters 15, 19, and 22.


