Chapter 23
Graph Neural Networks in Software Mining

Collin McMillan

Abstract Software Mining encompasses a broad range of tasks involving software,
such as finding the location of a bug in the source code of a program, generating nat-
ural language descriptions of software behavior, and detecting when two programs
do basically the same thing. Software tends to have an extremely well-defined struc-
ture, due to the linguistic confines of source code and the need for programmers to
maintain readability and compatibility when working on large teams. A tradition
of graph-based representations of software has therefore proliferated. Meanwhile,
advances in software repository maintenance have recently helped create very large
datasets of source code. The result is fertile ground for Graph Neural Network rep-
resentations of software to facilitate a plethora of software mining tasks. This chap-
ter will provide a brief history of these representations, describe typical software
mining tasks that benefit from GNNs, demonstrate one of these tasks in detail, and
explain the benefits that GNNs can provide. Caveats and recommendations will also
be discussed.

23.1 Introduction

Software Mining is broadly defined as any task that seeks to solve a software en-
gineering problem by analyzing the myriad artifacts in projects and their connec-
tions (Hassan and Xie, 2010; [Kagdi et al, | 2007; Zimmermann et al,|2005). Consider
the task of writing documentation. A human performing this task may gain compre-
hension of the software by reading the source code and understanding how different
parts of the code interact. Then he or she may write documentation explaining the
behavior of the system based on that comprehension. Likewise, if a machine is to
automate writing that documentation, the machine must also analyze the software
in order to comprehend it. This analysis is often called “Software Mining.”
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While human comprehension of software is a cognitive process that occurs natu-
rally as engineers read and interact with that software (Letovskyl |1987;|Maalej et al|
2014), machine comprehension must be formally defined and quantifiable. Typically
this boils down to a vectorized representation of each software artifact. For exam-
ple, each identifier name in a function may be assigned an, e.g., 100-length vector
denoting its position in a word embedding space. Then the function may be the av-
erage of those vectors for the identifier names it contains. Or it may be the output
of a recurrent neural network given those identifier name vectors, or perhaps only
the names that occur in particular locations. The point is that machine comprehen-
sion of software is often quantifiable as a vectorized representation of the artifacts
composing that software.

Evidence is accumulating that Graph Neural Networks are an effective means to
obtain these vectorized representations and thus improve machine comprehension of
software. There is a long tradition in the Software Engineering research literature of
treating software as a graph. Control flow graphs, call graphs, abstract syntax trees,
execution path graphs, and many others are frequently the output of both static and
dynamic analysis. Meanwhile, advances in software repository management have
enabled the creation of datasets covering billions of lines of code. The result is
fertile ground for GNNs.

This chapter covers the history and state-of-the-art in representing software as
a graph for GNNs, followed by a high-level discussion of current approaches, a
detailed look at a specific approach, and caveats for future researchers.

23.2 Modeling Software as a Graph

Software is a high-value target for GNNs partly because software tends to be very
highly structured as a graph or set of graphs. Different software mining tasks may
take advantage of different graph structures from software. Graph representations
of software go far beyond any specific software mining task. Graph representations
are baked into the way compilers convert source code into machine code (e.g., parse
trees). They are used during linking and dependency resolution (e.g., program de-
pendence graphs). And they have long the basis for many visualization and support
tools to help programmers understand large software projects (Gema et al, 2020
Ottenstein and Ottenstein, |1984; |Silva, 2012)).

When considering how to make use of these different graph structures in soft-
ware, basically the questions one must ask are: “what are the nodes?” and “what
are the edges?” These questions take two forms in software engineering research:
a macro- and a micro-level representation. The macro-level representation tends to
concern connections among large software artifacts, such as a graph in which ev-
ery source code file is a node and every dependency among the files is an edge.
The micro-level representation, in contrast, tends to include small details, such as a
graph in which every token in a function is a node, and every edge is a syntactic link
between the nodes, such as are often extracted from an Abstract Syntax Tree.
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This section compares and contrasts these representations as they relate to using
GNNss for Software Mining tasks.

23.2.1 Macro versus Micro Representations

Graph structures in software may be broadly classified as either macro- or micro-
level. In theory, the distinction is superfluous because a micro-level representation
may be scaled up to arbitrary size. For example, an entire large program may be
represented as one large abstract syntax tree. But in practice, time and space con-
straints necessitate a separation of macro- and micro-level representations. In a re-
cent collection of Java programs (LeClair and McMillan|[2019), the average number
of nodes in the AST of a function is over 120, with at least one edge per node. The
average number of functions per program is over 1800, and there are over 28,000
programs in the dataset. The reality is that a micro-level representation of an en-
tire program is often not feasible, so a macro-level representation is introduced to
capture the “big picture.”

23.2.1.1 Macro-level Representations

A macro-level graph representation of software captures the high-level structure
and intent behind a program while avoiding a deep dive into details required to
implement that intent. Inspiration for macro-level representations is often drawn
from software design documents, such as those formally defined via UML (Braude
and Bernstein, 2016; [Horton, [1992). An example is a class diagram for an object-
oriented program. Each class is a node in the graph. Edges in the graph may var-
iously be dependency, inheritance, realization, composition, among others. Nodes
may also have attributes that refer to the member variables and methods of a class.

In practice, selecting a macro-level representation for a software mining task us-
ing GNNs tends to be severely constrained by what can actually be obtained from
the dataset. Often this constraint precludes the use of behavior-based graphs such
as use case diagrams, because proper use case diagrams are rare, and those that are
available are usually not in a consistent format. For example, because some engi-
neers might follow different conventions, or only provide these diagrams informally.
Software repositories tend to be replete with source code but lack documentation,
especially design documentation (Kalliamvakou et al} [2014).

Therefore, by far, the most popular macro-level graph representations tend to be
ones that can be extracted directly from source code. A decision often arises related
to the degree of granularity, which usually is a choice between packages/directories,
classes/files, or methods/functions. The class diagram is relatively easy to locate ev-
ery class in a software project, then analyze each class to find their dependencies,
inheritances, and etc. Package diagrams are similar, having the advantage of quickly
providing a very high level view of a program — even large projects may only have a
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few dozen packages. But a very popular alternative is a function/method call graph,
in which each function in a program is a node and each call relationship from one
function to another is a directed edge between two nodes. Call graphs are popu-
lar within Software Engineering literature because they are relatively easy to extract
while giving enough detail for a strong macro-level view of a program without over-
whelming data sizes (recall a typical program has around 1800 functions (LeClair
and McMillan, 2019)).

23.2.1.2 Micro-level Representations

A micro-level representation describes a portion of the software in great detail.
Micro-level representations have been the focus of a majority of research using
GNN:ss for software mining. Allamanis et al (2018b) describe one approach, point-
ing out that the “backbone of a program graph is the program’s abstract syntax tree.”
However, as mentioned above, it is often not feasible to build a model relying on the
entire AST of an entire program. Instead, a typical practice is to generate the AST
for small portions of code, such as individual functions. Each function is treated as
a graph, independent of all other functions.

The benefit of treating each function as a separate graph is that a GNN model
can be trained on each independently. A prediction model of nearly any kind will
require independent, self-contained examples. There will be some context about
which an output prediction is generated (or against which a sample prediction is
used for training). By treating each function as an independent graph, a GNN can
be trained using each function as the context. This is a tidy solution in software
mining for two reasons. First, many tasks in software mining involve predictions
about specific functions, such as whether that function is likely to contain a fault
(see the next section). Second, graphs of functions derived from the AST exhibit a
community structure. In a typical function, there are many connections among nodes
inside the function, but relatively few connections from nodes inside the function to
nodes outside the function — the variables, conditionals, loops, and etc., in the code
of a function interact closely with each other, while must less frequently referring
to something outside the function such as the use of a global variable or call.

One may concoct any number of micro-level representations of software, based
on different tokens in the source code and relationships of those tokens. For ex-
ample, control flow relationships have occasionally been highlighted as often more
valuable for comprehension than data dependencies (Dearman et al, 20055 Ko et al,
2006). At other times, method invocations (Mcmillan et al,2013; |Sillito et al, [2008)
or signatures (Roehm et al, 2012)) are proposed as providing superior information
for different software mining tasks. Yet the pattern is that a micro-level representa-
tion is generated for many small portions of a software system, and these portions
are treated as independent of each other. A GNN can take advantage of these micro-
level representations by learning from each one as a different sample.
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23.2.2 Combining the Macro- and Micro-level

Macro- and micro-level representations may be combined. One strategy would be to
compute both macro- and micro-level representations independently, then concate-
nate them into one large context matrix. Such a model may be referred to as “dual
encoder” (Chidambaram et al, 2019} Yang et al, 2019h) or “cascading” (Wang et al,
2017h) in that they learn two representations of the same object but at different
levels of granularity. An alternative would be to use the output of the micro-level
representation to seed the macro-level representation, for example, by learning a
representation of each function using the AST and then using it as the initial value
for the nodes in a function call graph.

23.3 Relevant Software Mining Tasks

Graph neural networks are becoming a staple of research in software mining tasks.
The history of deep learning for software mining tasks is chronicled in several sur-
veys (Allamanis et al, 2018a; |[Lin et al, [2020b; Semasaba et all 2020; |Song et al|
2019b). |Allamanis et al| (2018a) cast a particularly wide net and broadly classify
software mining tasks that rely on neural networks as either “code generational”
or “code representational.” This classification is based on a big picture view of the
models used for these tasks. In a code generational task, the output of the model is
source code. Tasks in this category include automatic program repair (Chen et al|
2019e; |Dinella et al, 2020; [Wang et al, [2018d; |Vasic et all 2018} [Yasunaga and
Liang, 2020), code completion (L1 et al, [2018a; |Raychev et al,|2014)), and compiler
optimization (Brauckmann et al, 2020). These models tend to be trained with large
volumes of code vetted somehow to ensure quality, with the aim of learning norms
in code that lead to that quality. Then, during inference, the goal is to bring arbi-
trary code into closer conformance with those norms. For example, a model may be
presented with code containing a bug, and that bug may be repaired by changing
the code to be more like the model’s predictions (which, it is hoped, represent the
norms learned in training).

In contrast to code generational tasks are code representational tasks. These tasks
use source code primarily as the input to a neural model during training but have a
wide variety of outputs. Tasks in this category include code clone detection (Ain
et al,2019; L1 et al, 2017c; |White et al, [2016), code search (Chen and Zhou, 2018},
Sachdev et al, 2018}, Zhang et al, [2019f), type prediction (Pradel et al, [2020), and
code summarization (Song et al, 2019b). In models designed to solve these tasks, the
goal is usually to create a vectorized representation of code, which is then used for
a specific task that may only be tangentially related to the code itself. For instance,
for source code search, a neural model may be used to project the source code in
a large repository into a vector space. Then a different model is used to project a
natural language query into the same vector space. The code nearest to the query
in the vector space is considered as the search result for that query. Code clone
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detection is similar: code is projected into a vector space, and very nearby code may
be considered a clone in that space.

The use of graph neural networks is ballooning in both categories of software
mining tasks. In code generational tasks, the focus tends to be on modifications to a
program graph such as an AST that bring that graph into closer conformity with the
model’s expectations. While some approaches focus on code as a sequence (Chen
et al, |2019e), the recent trend has been to recommend graph transformations or
highlight non-conforming areas of the graph (Dinella et al, |2020; [Yasunaga and
Liang, [2020). This is useful in code because a recommendation may relate to code
elements that are quite far away from each other, such as the declaration of a vari-
able and a use of that variable. In contrast, in code representational tasks, the focus
tends to be on creating ever more complex graph representations of code and then
using GNN architectures to exploit that complexity. For example, the first GNN-
based approaches tended to use only the AST (LeClair et al| 2020), while newer
approaches use attention-based GNNs to emphasize the most important edges out
of a multitude that can be extracted from code (Ziigner et al, [2021). Despite differ-
ences in code generational and representational tasks, the trend in both categories
has strongly favored GNNss.

Consider the task of code summarization, which exemplifies the trend towards
GNNs. Code summarization is the task of writing natural language descriptions of
source code. Typically these descriptions are used in documentation for that source
code, e.g., JavaDocs. The evolution of this research area is shown in Figure [23.1
The term “code summarization” was coined around 2010, and several years of active
research followed using templated and IR-based solutions. Then around 2017, solu-
tions based on neural networks proliferated. At first, these were essentially seq2seq
models in which the encoder sequence is the code and decoder sequence is the de-
scription. Starting around 2018, the state-of-the-art moved to linearized AST repre-
sentations. Graph neural networks were proposed around this time as a better solu-
tion (Allamanis et al, 2018b), but it would be another year or more for GNN-based
approaches to appear in the literature. GNNs are poised to underpin the state-of-the-
art. In the next section, we dive into the details of a GNN-based solution, showing
why it works and areas of future growth.

23.4 Example Software Mining Task: Source Code
Summarization

This section describes source code summarization as an example software mining
task that benefits from GNNs. Source code summarization, as mentioned above, is
the task of writing natural language descriptions of source code. The input to a code
summarization model includes at least the source code being described, though may
also include other details about the software project from which the code originates.
The output is the natural language description. This task is considered “code repre-



23 Graph Neural Networks in Software Mining 505

sentational” because it primarily relies on a learned representation of code in order
to make predictions about the description.

23.4.1 Primer GNN-based Code Summarization

As a primer towards GNN-based code summarization, consider a technique pre-
sented by [LeClair et al|(2020). This model is intended to be a straightforward appli-
cation of convolutional GNNS in the vein of graph2seq (Xu et al,[2018c).
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Table 23.1: Overview of papers on the topic of source code summarization, from the paper to
coin the term “code summarization” in 2010 to the following ten years. Note the evolution from
IR/template-based solutions to neural models and now to GNN models. Column /R indicates if the
approach is based on Information Retrieval. M indicates manual features/heuristics. 7 indicates
templated natural language. A indicates Artificial Intelligence (usually Neural Network) solutions.
S means structural data such as the AST is used (for Al-based models). G means a GNN is the
primary means of representing that structural data.
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23.4.1.1 Model Input / Output

The input to this technique is a micro-level representation of code: it is just the AST
of a single subroutine. The nodes in the graph are all nodes in the GNN, whether
they are visible to the programmer or not. The only edge type is the parent-child
relationship in the AST. Consider the code and example summaries in Example[23.1
and the AST of this code in Figure Regarding the Figure bold indicates
text from source code that is visible to a human reader in the source code file —
a depth-first search of the leaf nodes reveals the code sequence. E.g., “public void
send guess ...” Non-bold indicates AST nodes that the compiler uses to represent
structure. Visible text is preprocessed as it would appear to the model. For example,
the name sendGuess is split into send and guess, and both nodes are children
of a name node, which is a child of function. Neither name nor function is
visible to a human reader. The circled areas 1-4 are reference points for discussion
in Sections and

The AST in Figure is the only input to the model, from which the model
must generate an English description. Technically, the AST is srcml (Collard et al,
2011} preprocessed (e.g., splitting identifies such as sendGuess into send and
guess) using community standard procedures (LeClair and McMillan| [2019)). The
reference output description in Example[23.T is the actual JavaDoc summary written
by a human programmer. The summary labeled “gnn ast” is the prediction from this
approach. The summary labeled “flat ast” is the output from an immediate prede-
cessor that used an RNN on a linearization of the AST. The only difference between
the GNN and flat AST approach is the structure of the encoder; all other model de-
tails are identical. Yet, we note that the GNN-based approach matched the reference
exactly, while the flat AST approach matched only a few words. Shortly we will
analyze this example to provide intuition about why the model performed so well.

summaries

reference sends a guess to the server
ast-attendgru-gnn (LeClair et al,|2020) sends a guess to the socket
ast-attendgru-flat (LeClair et al}|2019) attempts to initiate a <UNK> guess

source code

public void sendGuess (String guess) {

if( isConnected() ) {
gui.statusBarInfo ("Querying...", false);
try {
os.write( (guess + "\\r\\n").getBytes() );

os.flush();

} catch (IOException e) {
gui.statusBarInfo("Failed to send guess.", true);
System.err.println ("IOException during send guess");

Example 23.1: The function sendGuess () and summary descriptions.
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23.4.1.2 Model Architecture

The model architecture, as mentioned, is essentially a 2-hop graph2seq design based
on a convolutional GNN. While we leave the details of the model to the relevant
paper (LeClair et al, [2020)), a bird’s-eye view of the model is in Figure [23.2

The model input is derived only from a single subroutine being described: the
code as a sequence and the AST nodes and edges (Figure[23.2 area A). A word em-
bedding projects tokens in the sequence and nodes in the AST into the same vector
space, which is possible because the vocabulary is the same in both the sequence
and the node input (area B). A 2-hop convolutional GNN is used to form a vec-
torized representation of the AST (area C). The output after the second hop is a
matrix in which each column is a vector representing a node in the AST. A GRU
is then applied to this matrix to capture information about the order in which the
nodes appear. Meanwhile, a GRU is also applied to the sequence directly (area D).
The decoder is a simple GRU representation of the summary (area H). Attention is
applied between the decoder output and the sequence GRU output, as well as the
GNN output (area E). The attended matrices are then concatenated into a context
matrix (area F) and connected to an output dense layer (area G).

A key feature of the model is the attention between the decoder and the GNN
output. The purpose of this attention is to highlight the nodes in the AST that are the
most related to the words in the decoder sequence. We will describe below how this
attention was made much more effective by the shared word embedding (area B).

23.4.1.3 Experiment

An experiment demonstrated improvement of the GNN model over various base-
lines, and explored the effects of various model design decisions. The experiment
used a dataset of 2.1m Java methods and associated JavaDoc summaries (LeClair
et al, [2020). Essentially the conditions were that 80% of the projects in the dataset
were assigned for the training set, and 10% each for validation/testing. Duplicates
and other defects were removed from the dataset in accordance with community
standards (LeClair and McMillan, [2019). The model was trained with methods from
the projects in the training set. The training ran for 10 epochs, and the model with
the highest validation accuracy was selected for testing. The predictions from the
tests were then compared with reference summaries.

Three findings stand out in findings reported by |[LeClair et al (2020). First, the
GNN-based approaches outperform the most-similar baseline (ast-attendgru-flat) by
about 1 BLEU point (about a 5% improvement). Since the only difference between
the “flat” model and this GNN-based one is the AST encoder portion of the model,
the improvement can be attributed to the use of the GNN (as opposed to an RNN) for
the AST encoding. Improvement was also observed over two other baselines. The
vanilla graph2seq model, which had only the AST and not the sequence encoder
(Figure area A), was roughly equivalent to the flat AST model in terms of
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aggregate BLEU score but this score obscures some details of the performance,
which we will see in the next section.

The second key finding is that a hop distance of two results in the best over-
all performance. While models with GNN iterations ranging between one and ten
all achieve higher scores than the baselines, the model performs best with two it-
erations. One explanation is that nodes in the AST are only relevant to each other
within a distance of about two. The AST is a tree, so information is propagated up
and down levels of the tree. For two hops, this means information from a node will
propagate to its parent in the first hop and then to its grandparent and siblings in
the second hop. It is possible that nodes beyond this scope are not that relevant to
the model for code summarization. However, another explanation is that the method
of aggregating information in each hop is less efficient after two hops — this inter-
pretation would be consistent with findings by Xu et al| (2018c) that aggregation
procedure is critical to GNN deployment. Either way, the practical advice for model
designers is that the optimal number of GNN iterations for this task is not that high.

The third key finding is that the use of the GRU after the GNN layer (Figure[23.2]
after area C) improves overall performance. The models labeled with the suffix
+GRU use this GRU layer, as described in Section[23.4.1.2, The model labeled with
the suffix +dense calculates attention between the decoder and the output matrix
from the GNN. This model did not perform as well. A likely explanation is that
source code has not only a tree structure via the AST — it also has an order from
start to end. The GRU after the GNN captures this order and seems to result in a
better representation of the code for summarization.

23.4.1.4 What benefit did the GNN bring?

A question remains regarding what benefit can be attributed to the use of a GNN.
While we and others may observe an improvement in overall BLEU scores when
using a GNN (LeClair et al, [2020; |Ziigner et al, [2021}; [Liu et al, [2021), a key point
is that the GNN contributes orthogonal information to the model. This section ex-
plores how.

Concentration of Improvement:

The improvement is concentrated among a set of subroutines where the GNN
adds significant improvement. It is not the case that the BLEU scores increase
marginally for all subroutines — there is a set of subroutines that benefits the most.
Consider Figure 23.3] The pie chart divides the test set into subroutines from the
experiment describe above into five groups: one group where ast-attendgru-gnn per-
formed the best, one group where ast-attendgru-flat performed the best, one group
where they tied, one group for attendgru, and one group for other ties including
when all models made the same prediction. For simplicity, we use BLEU-1 scores
(BLEU-1 is unigram precision, single words predicted correctly).

What we observe is that each model achieves the highest BLEU-1 score for 20-
25% of the subroutines. For about 12% of the subroutines, the AST-based models
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were tied, meaning that in total over 50% of the subroutines benefited from AST
information (GNN plus flat AST models). But there still exists a large set of sub-
routines where attendgru outperformed all others. However, consider the bar chart
in Figure The “all” columns show the BLEU-1 score for that approach — note
that ast-attendgru-gnn is only marginally higher than others. The “best” columns
show the score for the set where that model achieved the highest BLEU-1 score (the
set with that model’s name indicated in the pie chart). We observe that the BLEU-1
scores for ast-attendgru-gnn are much higher for this set than others.

Demonstrating Improvement in Example 231}

A deeper dive into the subroutine sendGuess () from Example demon-
strates the improvement that a GNN provides. Recall that the ast-attendgru-gnn
model calculates attention between each position in the decoder and each node in
the output from the GNN (Section [23.4.1.2] Figure [23.2]area E). The result is an m
X n matrix where m is the length of the decoder sequence and »n is the number of
nodes (in the implementation, m=13 and n=100). Thus each position in the attention
matrix represents the relevance of an AST node to a word in the output summary.
In fact, the attention matrix for ast-attendgru-flat has the same meaning: the mod-
els are identical except that ast-attendgru-gnn encodes the AST with a GNN then a
GRU, while the flat model uses only the GRU. Comparing the values in these atten-
tion matrices provides a useful contrast of the two models because they show the
contribution of the AST encoding to the prediction.

The benefit of a GNN becomes apparent in the attention networks in Figure[23.3]
Both models have a very similar attention activation to the tokens in the source code
sequence (Figures and [23.3F). Both models show close attention to position
2 of the code sequence, which is the word “send”. This is not surprising consider-
ing that “send” appears in the method’s name. Yet, ast-attendgru-flat still incorrectly
predicts the first word of the summary as “attempts”, while ast-attendgru-gnn cor-
rectly predicts “sends.” The explanation lies in the attention to AST nodes. The
flat model focuses on node 37 (Figure [23.3d), which is an expr_stmt node immedi-
ately after the try block, just before the call to os.write (), indicated as area
1 in Figure The reason for this focus suggested by the original paper on that
model (LeClair et al, 2019) is that the flat AST model tends to learn broadly similar
code structure such as “if-block, try-block, call to os .write ().” Under this expla-
nation, methods in the training set with this if-try-call-catch pattern are associated
with the word “attempts.”

In contrast, the GNN-based model focuses on position 8, which is the word
“send” in the method name, just like in the attention to the code sequence (Fig-
ure[23.3p). The result is that the GNN-based AST encoding reinforces the attention
paid to this word when predicting the first word of the output. Consider the method’s
AST in Figure[23.1] Position 8 is the node for “send” indicated at area 2. In a 2-hop
GNN, this node will share information with its parent (name), grandparent (func-
tion), and sibling (guess). During training, the model learned that words associated
with the AST nodes “function” and “name” are likely candidates for the first word
of the summary, so the model knows to highlight this word.
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In short, the GNN model outperformed because it conveys a lopsided benefit to
a particular subset of the subroutines, and a likely reason it conveys this benefit is
that it learns to associate AST tokens with particular locations in the code summary.

23.4.2 Directions for Improvement

The view of software as a graph described in Section [23.2] provides two directions
for improvement: micro- and macro-level representations. Essentially the choice is
whether to attempt to squeeze more information out of the source code being de-
scribed (micro-level) or to draw upon more information from outside that source
code (macro-level). If the aim is to generate summaries of a Java method, then one
may learn more information about the details of that method, or one may use in-
formation from the classes, packages, dependencies, and etc., around the method.
Micro- and macro-level improvements tend to be complementary rather than com-
petitive. Learning more about the macro-level graph information benefits models of
micro-level information and visa versa (Haque et al, 2020).

23.4.2.1 Example Micro-level Improvement

Liu et al (2021) present a notable example of an improvement to GNN-based code
summarization using a richer micro-level graph representation of software. The es-
sentials of the approach are similar to (LeClair et al, 2020) described above: the
input to the model is the source code of a subroutine, and the output is a description
of the subroutine. The encoder is based on a GNN, and the input to this GNN is the
AST of the subroutine. The nodes in the graph are AST nodes, and the edges are the
AST parent-child relationships. However, one novel aspect is that the model also
considers other types of edges, namely control flow and data dependencies (these
are unified as a Code Property Graph (Yamaguchi et al, 2014)). The benefit to this
structure is that nodes in the AST will receive information directly from other rele-
vant parts of the code, rather than only the nodes nearby in the AST.

Consider Figure |23.1]area 3, which is an AST node corresponding to the string
variable “guess” in Example The ast-attendgru-gnn approach would propa-
gate information from that variable to the parents, grandparents, and siblings (in the
two hops configuration). These would be the “name” and “decl” AST nodes. These
nodes have locations in the word embedding associated with them, and these nodes
also appear in practically every subroutine in the dataset. So, the model will learn
how these nodes are used and associate them with what a human would call a vari-
able declaration. The effect in this example is that the model will learn that the word
“guess” is a variable name declaration.

The approach by Liu et al. improves over ast-attendgru-gnn because it can learn
this relationship in addition to several others. The experiment with ast-attendgru-gnn
showed evidence that AST structural information can lead to a better representation
of code — it is useful to know that “guess” is a variable name declaration. But other
relationships also exist. The variable “guess” is used in the call to os.write (). This
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relationship is a data dependency and is useful to human readers (Freeman, [2003)).
A human attempting to comprehend this code would likely note that whatever is
passed into the subroutine as a parameter via the variable “guess” is subsequently
written out via a method call. The benefit to Liu et al.’s approach is that it captures
this relationship and uses it to form a more-complete GNN-based representation of
the code.

A caveat is that as more edge types are added to the graph, more information
will be propagated among nodes, which may have effects that are difficult to ex-
plain. Imagine in Figure 23.T]if an edge were to exist between “guess” at area 4 and
“guess” at area 1, denoting a data dependency. A typical GNN design would prop-
agate information across this edge. The result would be that the nodes around the
location that uses “guess” would gain information from the nodes where “guess” is
defined. But now imagine a control dependency from the t ry block start to the call
to os.write (). The information would then also propagate from the try block to
the use of “guess” over the control flow edge and then from the use of “guess” to the
definition of “guess” over the data flow edge. This connection is difficult to explain
— it is not clear what it means for a t ry block to be connected to the parameter list.
A human may proffer an explanation for this particular subroutine, but a model such
as ast-attendgru-gnn would always propagate information across these edges, even
when it does not make sense to do so.

Liu et al. solve this problem by using an attentional GNN proposed by [Zhu et al
(2019b). Essentially, this GNN adds an attention layer as a gate prior to propagating
information across an edge. The input to this gate includes the node embedding for
the node at the origin of the edge, plus an edge embedding for that type of edge. The
result is that the model learns during training when to propagate information from a
node over a particular type of edge. That way, information from the, e.g., try block
may or may not propagate to the parameter list, depending on whether that particu-
lar connection was useful during training. Liu et al. use the learned representation of
code to help locate similar code comments in a database of those comments. How-
ever, the big picture idea is to use an attentional GNN to emphasize some edges in
the code over others when the graph representation of code becomes large and com-
plex, and this idea may serve as inspiration for a variety of software mining tasks.
It is an example of how better micro-level representations of code can assist these
software mining tasks.

23.4.2.2 Example Macro-level Improvement

One inspiration for macro-level improvement to neural code summarization is from
(Aghamohammadi et al||2020). Their approach focuses on generating summaries of
code in Android projects. The approach is divided into two parts. The first part cen-
ters around an attentional encoder-decoder model similar to the attendgru baseline
described by |[LeClair et al (2019). They use this model to generate an initial code
summary based solely on the words inside the subroutine itself. The second part is to
augment the initial summary with phrases from the summaries of other subroutines
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in the same project. The approach is to obtain a dynamic call graph of the Android
program, which represents the actual runtime control flow from one subroutine to
the next. Then a subset of the subroutines in this call graph is selected using PageR-
ank — the idea is to emphasize the subroutines, which are called many times or hold
other importance measurable from the structure of the call graph (McMillan et al|
2011). The summaries from these subroutines are then appended to the initial sum-
mary.

Aghamohammadi et al| (2020)’s approach demonstrates an advantage to macro-
level information. The macro-level information is the dynamic call graph of the
entire program, and it is used to augment summaries created from the source code
itself. The summaries tend to be longer and to provide more contextual informa-
tion to readers. Recall sendGuess () in Example for which ast-attendgru-gnn
wrote “sends a guess to the socket.” The approach by | Aghamohammadi et al|(2020)
may (hypothetically) find that the subroutine that calls sendGuess () is a mouse
click handler subroutine, and so would append, e.g., “called when the mouse is used
to click the button.” Human readers of documentation benefit from knowing how
subroutines are used, so summaries that include this macro-level information tend
to be considered more valuable by those readers (Holmes and Murphy, |2005; Ko
et al, 2006; McBurney and McMillan, 2016).

Macro-level representations of code for software mining tasks are likely fertile
ground for GNN-based technologies. The dynamic call graphs which|Aghamoham-
madi et al (2020) extract contain information from actual runtime use, and a GNN
may serve as a useful tool in generating a representation of this information. Yet,
applications of GNNs to macro-level data for software mining tasks are still in their
infancy.

23.5 Summary

In this chapter, we presented Software Mining Tasks as an application area for
GNNSs. A high-level view of any approach is to represent the software as a graph,
then create a GNN model able to use this graph to learn to make predictions for a
particular purpose. We present two views of software graphs: a micro- and macro-
level representation. Micro-level representations predominate. For example, for the
task of bug prediction in a subroutine, most approaches tend to look exclusively
within those subroutines for patterns associated with that bug. Yet, evidence is
emerging that macro-level representations may also benefit these tasks, as the con-
text surrounding code is very likely to contain information necessary to compre-
hend that code. The future likely lies in combined GNN models of both micro- and
macro-level graph representations of software.

We focus in this chapter on the task of source code summarization as an exam-
ple of how GNN-based models help produce better predictions for software mining
tasks. A straightforward approach is described in which the AST of subroutines is
used to train a GNN, which leads to a better micro-level representation in many
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cases. An improvement based on an attentional GNN shows how much more com-
plex graphs can also be exploited for better for this purpose. Yet, these improve-
ments for code summarization likely herald improvements for many software min-
ing tasks. Both code representational and code generational tasks depend heavily on
understanding the nuances of the structure that code, and GNNs are a likely avenue
for capturing this structure. This chapter has covered the history of this research, a
specific target problem, and recommendations for future researchers.

Editor’s Notes: Al for Code is a very fast-growing area in the recent years.
Computer software or program is just like a second language compared
to human language, which is not surprising that there are many shared at-
tributes or aspects in both languages. Therefore, we have seen this trend
that both NLP and Software communities start paying a large amount of
attentions in applying GNNs for their domain applications and achieve the
great successes in both domains. Just like GNNs for NLP, graph structure
learning techniques in Chapter 14, GNN Methods in Chapter 4, GNN Scal-
ability in Chapter 6, Heterogeneous GNNs in Chapter 16, GNN Robustness
in Chapter 8 are all highly important building blocks for developing an ef-
fective and efficient approach with GNNs for code.
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Figure 23.2: High-level diagram of the model architecture for 2-hop model.
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Figure 23.3: (left) Comparison of the BLEU-1 score for the subroutines where each
method performed best, to BLEU-1 score for the whole test set. (right) Percent of
test set for which each approach received the highest BLEU-1 score.
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(a) ast-attendgru-gnn attention to source code sequence
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(b) ast-attendgru-gnn attention to AST nodes
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(c) ast-attendgru-flat attention to source code sequence
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(d) ast-attendgru-flat attention to AST nodes

Figure 23.4: Visualization of attention network for ast-attendgru-gnn and ast-
attendgru-flat for the subroutine sendGuess () in Example23.T]and AST in Fig-
ure 23.T. Matrices are 13x100 because attention is applied between every position
in the decoder output (length 13) and every position in the encoder (100 nodes or
100 code tokens). Bright areas indicate high attention. For example, position 2 in
the code sequence is heavily emphasized for both models. Position 2 corresponds to
the word “send” in the code sequence.



