
Chapter 22
Graph Neural Networks in Program Analysis

Miltiadis Allamanis

Abstract Program analysis aims to determine if a program’s behavior complies
with some specification. Commonly, program analyses need to be defined and tuned
by humans. This is a costly process. Recently, machine learning methods have
shown promise for probabilistically realizing a wide range of program analyses.
Given the structured nature of programs, and the commonality of graph represen-
tations in program analysis, graph neural networks (GNN) offer an elegant way to
represent, learn, and reason about programs and are commonly used in machine
learning-based program analyses. This chapter discusses the use of GNNs for pro-
gram analysis, highlighting two practical use cases: variable misuse detection and
type inference.

22.1 Introduction

Program analysis is a widely studied area in programming language research that
has been an active and lively research domain for decades with many fruitful re-
sults. The goal of program analysis is to determine properties of a program with
regards to its behavior (Nielson et al, 2015). Traditionally analysis methods aim to
provide formal guarantees about some program property e.g., that the output of a
function always satisfies some condition, or that a program will always terminate.
To provide those guarantees, traditional program analysis relies on rigorous math-
ematical methods that can deterministically and conclusively prove or disprove a
formal statement about a program’s behavior.

However, these methods cannot learn to employ coding patterns or probabilisti-
cally handle ambiguous information that is abundant in real-life code and is widely
used by coders. For example, when a software engineer encounters a variable named

Miltiadis Allamanis
Microsoft Research, e-mail: miallama@microsoft.com

483

miallama@microsoft.com

484 Miltiadis Allamanis

“counter”, without any additional context, she/he will conclude with a high proba-
bility that this variable is a non-negative integer that enumerates some elements or
events. In contrast, a formal program analysis method — having no additional con-
text — will conservatively conclude that “counter” may contain any value.

Machine learning-based program analysis (Section 22.2) aims to provide this
human-like ability to learn to reason over ambiguous and partial information at the
cost of foregoing the ability to provide (absolute) guarantees. Instead, through learn-
ing common coding patterns, such as naming conventions and syntactic idioms,
these methods can offer (probabilistic) evidence about aspects of the behavior of a
program. This is not to say that machine learning makes traditional program analy-
ses redundant. Instead, machine learning provides a useful weapon in the arsenal of
program analysis methodologies.

Graph representations of programs play a central role in program analysis and al-
low reasoning over the complex structure of programs. Section 22.3 illustrates one
such graph representation which we use throughout this and discusses alternatives.
We then discuss GNNs which have found a natural fit for machine learning-based
program analyses and relate them to other machine learning models (Section 22.4).
GNNs allow us to represent, learn, and reason over programs elegantly by integrat-
ing the rich, deterministic relationships among program entities with the ability to
learn over ambiguous coding patterns. In this , we discuss how to approach two prac-
tical static program analyses using GNNs: bug detection (Section 22.5), and prob-
abilistic type inference (Section 22.6). We conclude this (Section 22.7) discussing
open challenges and promising new areas of research in the area.

22.2 Machine Learning in Program Analysis

Before discussing program analysis with GNNs, it is important to take a step back
and ask where machine learning can help program analysis and why. At a first look
these two fields seem incompatible: static program analyses commonly seek guar-
antees (e.g., a program never reaches some state) and dynamic program analyses
certify some aspect of a program’s execution (e.g., specific inputs yield expected
outputs), whereas machine learning models probabilities of events.

At the same time, the burgeoning area of machine learning for code (Allamanis
et al, 2018a) has shown that machine learning can be applied to source code across
a series of software engineering tasks. The premise is that although code has a de-
terministic, unambiguous structure, humans write code that contains patterns and
ambiguous information (e.g. comments, variable names) that is valuable for under-
standing its functionality. It is this phenomenon that program analysis can also take
advantage of.

There are two broad areas where machine learning can be used in program anal-
ysis: learning proof heuristics, and learning static or dynamic program analyses.
Commonly static program analyses resort into converting the analysis task into a
combinatorial search problem, such as a Boolean satisfiability problem (SAT), or

22 Graph Neural Networks in Program Analysis 485

another form of theorem proving. Such problems are known to often be computa-
tionally intractable. Machine learning-based methods, such as the work of (Irving
et al, 2016) and (Selsam and Bjørner, 2019) have shown the promise that heuris-
tics can be learned to guide combinatorial search. Discussing this exciting area of
research is out-of-scope for this . Instead, we focus on the static program analysis
learning problem.

Conceptually, a specification defines a desired aspect of a program’s functionality
and can take many forms, from natural language descriptions to formal mathemati-
cal constructs. Traditional static program analyses commonly resort to formulating
program analyses through rigorous formal methods and dynamic analyses through
observations of program executions. However, defining such program analyses is a
tedious, manual task that can rarely scale to a wide range of properties and programs.
Although it is imperative that formal methods are used for safety-critical applica-
tions, there is a wide range of applications that miss on the opportunity to benefit
from program analysis. Machine learning-based program analysis aims to address
this, but sacrifice the ability to provide guarantees. Specifically, machine learning
can help program analyses deal with the two common sources of ambiguities: latent
specifications, and ambiguous execution contexts (e.g., due to dynamically loaded
code). Program analysis learning commonly takes one of three forms, discussed
next.

Specification Tuning where an expert writes a sound program analysis which may
yield many false positives (false alarms). Raising a large number of false alarms
leads to the analogue of Aesop’s “The Boy who Cried Wolf”: too many false alarms,
lead to true positives getting ignored, diminishing the utility of the analysis. To ad-
dress this, work such as those of (Raghothaman et al, 2018) and (Mangal et al,
2015) use machine learning methods to “tune” (or post-process) a program analy-
sis by learning which aspects of the formal analysis can be discounted, increasing
precision at the cost of recall (soundness).

Specification Inference where a machine learning model is asked to learn to pre-
dict a plausible specification from existing code. By making the (reasonable) as-
sumption that most of the code in a codebase complies with some latent specifica-
tion, machine learning models are asked to infer closed forms of those specifica-
tions. The predicted specifications can then be input to traditional program analyses
that check if a program satisfies them. Examples of such models are the factor graphs
of (Kremenek et al, 2007) for detecting resource leaks, the work of (Livshits et al,
2009) and (Chibotaru et al, 2019) for information flow analysis, the work of (Si
et al, 2018) for generating loop invariants, and the work of (Bielik et al, 2017) for
synthesizing rule-based static analyzers from examples. The type inference problem
discussed in Section 22.6 is also an instance of specification inference.

Weaker specifications — commonly used in dynamic analyses — can also be in-
ferred. For example, Ernst et al (2007) and Hellendoorn et al (2019a) aim to predict
invariants (assert statements) by observing the values during execution. Tufano et al
(2020) learn to generate unit tests that describe aspects of the code’s behavior.

486 Miltiadis Allamanis

Black Box Analysis Learning where the machine learning model acts as a black
box that performs the program analysis and raises warnings but never explicitly for-
mulates a concrete specification. Such forms of program analysis have great flexi-
bility and go beyond what many traditional program analyses can do. However, they
often sacrifice explainability and provide no guarantees. Examples of such methods
include DeepBugs (Pradel and Sen, 2018), Hoppity (Dinella et al, 2020), and the
variable misuse problem (Allamanis et al, 2018b) discussed in Section 22.5.

In Section 22.5 and 22.6, we showcase two learned program analyses using
GNNs. However, we first need to discuss how to represent programs as graphs (Sec-
tion 22.3) and how to process these graphs with GNNs (Section 22.4).

22.3 A Graph Represention of Programs

Many traditional program analysis methods are formulated over graph represen-
tations of programs. Examples of such representations include syntax trees, con-
trol flow, data flow, program dependence, and call graphs each providing different
views of a program. At a high level, programs can be thought as a set of heteroge-
neous entities that are related through various kinds of relations. This view directly
maps a program to a heterogeneous directed graph G = (V ,E), with each entity
being represented as a node and each relationship of type r represented as an edge
(vi,r,v j) 2 E . These graphs resemble knowledge bases with two important differ-
ences (1) nodes and edges can be deterministically extracted from source code and
other program artifacts (2) there is one graph per program/code snippet.

However, deciding which entities and relations to include in a graph represen-
tation of a program is a form of feature engineering and task-dependent. Note that
there is no unique or widely accepted method to convert a program into a graph
representation; different representations offer trade-offs between expressing various
program properties, the size of the graph representation, and the (human and com-
putational) effort required to generate them.

In this section we illustrate one possible program graph representation inspired
by (Allamanis et al, 2018b), who model each source code file as a single graph.
We discuss other graph representations at the end of this section. Figure 22.1 shows
the graph for a hand-crafted synthetic Python code snippet curated to illustrate a
few aspects of the graph representation. A high-level explanation of the entities
and relations follows; for a detailed overview of the relevant concepts, we refer the
reader to programming language literature, such as the compiler textbook of (Aho
et al, 2006).

Tokens A program’s source code is at its most basic form a string of characters. By
construction programming languages can be deterministically tokenized (lexed) into
a sequence of tokens (also known as lexemes). Each token can then be represented
as a node (white boxes with gray border in Figure 22.1) of “token” type. These

22 Graph Neural Networks in Program Analysis 487

7

6

5

1

2

3

4

def normalize_and_encode (content max_len, , min_len) :

if len (content) > max_len :

“””Truncate content and encode.”””

elif len (content) < min_len :

content content= []min_len:

raise Exception ()

return bytes_encode (content)

Assign

Raise

Comparison

ReturnStatement

Comparison

MethodInvoke

MethodInvoke

MethodInvoke

Index

MethodInvoke

if

if

Body

FnDef Parameters

content

min_len

max_len

Token Node Symbol NodeSyntax Node Child Occurrence Of May Next Use

Fig. 22.1: A heterogeneous graph representation of a simple synthetic Python pro-
gram (some nodes omitted for visual clarity). Source code is represented as a het-
erogeneous graph with typed nodes and edges (shown at the bottom of the figure).
Code is originally made of tokens (token nodes) which can deterministically be
parsed into a syntax tree with non-terminal nodes (vertexes). The symbols present
in the snippet (e.g. variables) can then be computed (Symbol nodes) and each refer-
ence of symbol denoted by an OccurenceOf edge. Finally, dataflow edges can be
computed (MayNextUse) to indicate the possible flows of values in the program.
Note, the snippet here contains a bug in line 4 (see Section 22.5).

nodes are connected with a NextToken edge (not shown in Figure 22.1) to form a
linear chain.

Syntax The sequence of tokens is parsed into a syntax tree. The leafs of the tree
are the tokens and all other nodes of the tree are “syntax nodes” (Figure 22.1; grey
blue rounded boxes). Using edges of Child type all syntax nodes and tokens are con-
nected to form a tree structure. This stucture provides contextual information about
the syntactical role of the tokens, and groups them into expressions and statements;
core units in program analysis.

Symbols Next, we introduce “symbol” nodes (Figure 22.1; black boxes with
dashed outline). Symbols in Python are the variables, functions, packages that are
available at a given scope of a program. Like most compilers and interpreters, after
parsing the code, Python creates a symbol table containing all the symbols within

488 Miltiadis Allamanis

each file of code. For each symbol, a node is created. Then, every identifier token
(e.g., the content tokens in Figure 22.1) or expression node is connected to the sym-
bol node it refers to. Symbol nodes act as a central point of reference among the
uses of variables and are useful for modeling the long-range relationships (e.g., how
an object is used).

Data Flow To convey information about the program execution we add data flow
edges to the graph (dotted curved lines in Figure 22.1) using an intraprocedural
dataflow analysis. Although, the actual data flow within the program during execu-
tion is unknown due to the use of branching in loops and if statements, we can add
edges indicating all the valid paths that data may flow through the program. Take as
an example the parameter min len in Figure 22.1. If the condition in line 3 is true,
then min len will be accessed in line 4, but not in line 5. Conversely, if the condition
in line 3 is false, then the program will proceed to line 5, where min len will be
accessed. We denote this information with a MayNextUse edge. This construction
resembles a program dependence graph (PDG) used in compilers and conventional
program analyses. In contrast to the edges previously discussed, MayNextUse has a
different flavor. It does not indicate a deterministic relationship but sketches all pos-
sible data flows during execution. Such relationships are central in program analyses
where existential or universal properties of programs need to be computed. For ex-
ample, a program analysis may need to compute that for all (8) possible execution
paths some property is true, or that there exists (9) at least one possible execution
with some property.

It is interesting to observe that just using the token nodes and NextToken edges
we can (deterministically) compute all other nodes and edges. Compilers do ex-
actly that. Then why introduce those additional nodes and edges and not let a neural
network figure them out? Extracting such graph representations is cheap computa-
tionally and can be performed using the compiler/interpreter of the programming
language without substantial effort. By directly providing this information to ma-
chine learning models — such as GNNs — we avoid “spending” model capacity for
learning deterministic facts and introduce inductive biases that can help on program
analysis tasks.

Alternative Graph Representations So far we presented a simplified graph rep-
resentation inspired from (Allamanis et al, 2020). However, this is just one possi-
ble representation among many, that emphasizes the local aspects of code, such as
syntax, and intraprocedural data flow. These aspects will be useful for the tasks dis-
cussed in Sections 22.5 and 22.6. Others entities and relationships can be added, in
the graph representation of Figure 22.1. For example, Allamanis et al (2018b) use a
GuardedBy edge type to indicate that a statement is guarded by a condition (i.e., it
is executed only when the condition is true), and Cvitkovic et al (2018) use a Subto-

kenOf edge to connect tokens to special subtoken nodes indicating that the nodes
share a common subtoken (e.g., the tokens max len and min len in Figure 22.1 share
the len subtoken).

Representations such as the one presented here are local, i.e. emphasize the local
structure of the code and allow detecting and using fine-grained patterns. Other local

22 Graph Neural Networks in Program Analysis 489

representations, such as the one of (Cummins et al, 2020) emphasize the data and
control flow removing the rich natural language information in identifiers and com-
ments, which is unnecessary for some compiler program analysis tasks. However,
such local representations yield extremely large graphs when representing multiple
files and the graphs become too large for current GNN architectures to meaningfully
process (e.g., due to very long distances among nodes). Although a single, general
graph representation that includes every imaginable entity and relationship would
seem useful, existing GNNs would suffer to process the deluge of data. Neverthe-
less, alternative graph constructions that emphasize different program aspects are
found in the literature and provide different trade-offs.

One such representation is the global hypergraph representation of (Wei et al,
2019) that emphasizes the inter- and intraprocedural type constraints among expres-
sions in a program, ignoring information about syntactic patterns, control flow, and
intraprocedural data flow. This allows processing whole programs (instead of single
files; as in the representation of Figure 22.1) in a way that is suitable for predicting
type annotations, but misses the opportunity to learn from syntactic and control-flow
patterns. For example, it would be hard argue for using this representation for the
variable misuse bug detection discussed in Section 22.5.

Another kind of graph representations is the extrinsic one defined by (Abde-
laziz et al, 2020) who combine syntactic and semantic information of programs
with metadata such as documentation and content from question and answer (Q&A)
websites. Such representations often de-emphasize aspects of the code structure fo-
cusing on other natural language and social elements of software development. Such
a representation would be unsuitable for the program analyses of Sections 22.5 and
22.6.

22.4 Graph Neural Networks for Program Graphs

Given the predominance of the graph representations for code, a variety of ma-
chine learning techniques has been employed for program analyses over program
graphs, well before GNNs got established in the machine learning community. In
these methods, we find some of the origins and motivations for GNNs.

One popular approach has been to project the graph into another simpler repre-
sentation that other machine learning methods can accept as input. Such projections
include sequences, trees, and paths. For example, Mir et al (2021) encode the se-
quences of tokens around each variable usage to predict its type (as in the usecase
of Section 22.6). Sequence-based models offer great simplicity and have good com-
putational performance but may miss the opportunity to capture complex structural
patterns such as data and control flow.

Another successful representation is the extraction of paths from trees or graphs.
For example, Alon et al (2019a) extract a sample of the paths between every two
terminal nodes in an abstract syntax tree, which resembles random walk meth-
ods (Vishwanathan et al, 2010). Such methods can capture the syntactic informa-

490 Miltiadis Allamanis

tion and learn to derive some of code’s semantic information. These paths are easy
to extract and provide useful features to learn about code. Nevertheless, they are
lossy projections of the entities and relations within a program, that a GNN can – in
principle – use in full.

Finally, factor graphs, such as conditional random fields (CRF) work directly on
graphs. Such models commonly include carefully constructed graphs that capture
only the relevant relationships. The most prominent example in program analysis
includes the work of Raychev et al (2015) that captures the type constraints among
expressions and the names of identifiers. While such models accurately represent
entities and relationships, they commonly require manual feature engineering and
cannot easily learn “soft” patterns beyond those explicitly modeled.

Graph Neural Networks GNNs rapidly became a valuable tool for learned pro-
gram analyses given their flexibility to learn from rich patterns and the easiness
of combining them with other neural network components. Given a program graph
representation, GNNs compute the network embeddings for each node, to be used
for downstream tasks, such as those discussed in Section 22.5 and 22.6. First, each
entity/node vi is embedded into a vector representation nvi . Program graphs have
rich and diverse information in their nodes, such as meaningful identifier names
(e.g. max len). To take advantage of the information within each token and symbol
node, its string representation is subtokenized (e.g. “max”, “len”) and each initial
node representation nvi is computed by pooling the embeddings of the subtokens,
i.e., for a node vi and for sum pooling, the input node representation is computed as

nvi = Â
s2SUBTOKENIZE(vi)

ts

where ts is a learned embedding for a subtoken s. For syntax nodes, their initial
state is the embedding of the type of the node. Then, any GNN architecture that
can process directed heterogeneous graphs1 can be used to compute the network
embeddings, i.e.,

{hvi} = GNN
�
G 0,{nvi}

�
, (22.1)

where the GNN commonly has a fixed number of “layers” (e.g. 8), G 0 = (V ,E [
Einv), and Einv is the set of inverse edges of E , i.e., Einv =

�
(v j,r�1,vi),8(vi,r,v j) 2 E

.

The network embeddings {hvi} are then the input to a task-specific neural network.
We discuss two tasks in the next sections.

1 GGNNs (Li et al, 2016b) have historically been a common option, but other architectures have
shown improvements (Brockschmidt, 2020) over plain GGNNs for some tasks.

22 Graph Neural Networks in Program Analysis 491

22.5 Case Study 1: Detecting Variable Misuse Bugs

We now focus on a black box analysis learning problem that utilizes the graph rep-
resentation discussed in the previous section. Specifically, we discuss the variable
misuse task, first introduced by (Allamanis et al, 2018b) but employ the formulation
of (Vasic et al, 2018). A variable misuse is the incorrect use of one variable instead
of another already in the scope. Figure 22.1 contains such a bug in line 4, where
instead of min len, the max len variable needs to be used to correctly truncate the
content. To tackle this task a model needs to first localize (locate) the bug (if one
exists) and then suggest a repair.

Such bugs happen frequently, often due to careless copy-paste operations and can
often be though as “typos”. Karampatsis and Sutton (2020) find that more than 12%
of the bugs in a large set of Java codebases are variable misuses, whereas Tarlow et al
(2020) find 6% of Java build errors in the Google engineering systems are variable
misuses. This is a lower bound, since the Java compiler can only detect variable
misuse bugs though its type checker. The author conjectures — from his personal
experience — that many more variable misuse bugs arise during code editing and
are resolved before being committed to a repository.

Note that this is a black box analysis learning task. No explicit specification
of what the user tries to achieve exists. Instead the GNN needs to infer this from
common coding patterns, natural language information within comments (like the
one in line 2; Figure 22.1) and identifier names (like min, max, and len) to reason
about the presence of a likely bug. In Figure 22.1 it is reasonable to assume that the
developer’s intent is to truncate content to max len when it exceeds that size (line
4). Thus, the goal of the variable misuse analysis is to (1) localize the bug (if one
exists) by pointing to the buggy node (the min len token in line 4), and (2) suggest
a repair (the max len symbol).

To achieve this, assume that a GNN has computed the network embeddings {hvi}
for all nodes vi 2 V in the program graph G (Equation 22.1). Then, let Vvu ⇢ V be
the set of token nodes that refer to variable usages, such as the min len token in line
4 (Figure 22.1). First, a localization module aims to pinpoint which variable usage
(if any) is a variable misuse. This is implemented as a pointer network (Vinyals
et al, 2015) over Vvu [{ /0} where /0 denotes the “no bug” event with a learned h /0
embedding. Then using a (learnable) projection u and a softmax, we can compute
the probability distribution over Vvu and the special “no bug” event,

ploc(vi) = softmax
v j2Vvu[{ /0}

⇣
u>hvi

⌘
. (22.2)

In the case of Figure 22.1, a GNN detecting the variable misuse bug in line 4, would
assign a high ploc to the node corresponding to the min len token, which is the
location of the variable misuse bug. During (supervised) training the loss is simply
the cross-entropy classification loss of the probability of the ground-truth location
(Equation 22.2).

492 Miltiadis Allamanis

1 def describe_identity_pool(self, identity_pool_id):
2 identity_pool = self.identity_pools.get(identity_pool_id, None)
3

4 if not identity_pool:
5 - raise ResourceNotFoundError(identity_pool)
6 + raise ResourceNotFoundError(identity_pool_id)
7 ...

Fig. 22.2: A diff snippet of code with a real-life variable misuse error caught by a
GNN-based model in the https://github.com/spulec/moto open-source
project.

Repair given the location of a variable misuse bug can also be represented as a
pointer network over the nodes of the symbols that are in scope at the variable mis-
use location vbug. We define Vs@vbug as the set of the symbol nodes of the alternative
candidate symbols that are in scope at vbug, except from the symbol node of vbug.
In the case of Figure 22.1 and the bug in line 4, Vs@vbug would contain the content
and max len symbol nodes. We can then compute the probability of repairing the
localized variable misuse bug with the symbol si as

prep(si) = softmax
s j2Vs@vbug

⇣
w>[hvbug ,hsi]

⌘
,

i.e., the softmax of the concatenation of the node embeddings of vbug and si, pro-
jected onto a w (i.e., a linear layer). For the example of Figure. 22.1, prep(si) should
be high for the symbol node of max len, which is the intended repair for the vari-
able misuse bug. Again, in supervised training, we minimize the cross-entropy loss
of the probability of the ground-truth repair.

Training When a large dataset of variable misuse bugs and the relevant fixes can
be mined, the GNN-based model discussed in this section can be trained in a super-
vised manner. However, such datasets are hard to collect at the scale that existing
deep learning methods require to achieve reasonable performance. Instead work in
this area has opted to automatically insert random variable misuse bugs in code
scraped from open-source repositories — such as GitHub — and create a corpus of
randomly inserted bugs (Vasic et al, 2018; Hellendoorn et al, 2019b). However, the
random generation of buggy code needs to be carefully performed. If the randomly
introduced bugs are “too obvious”, the learned models will not be useful. For exam-
ple, random bug generators should avoid introducing a variable misuse that causes
a variable to be used before it is defined (use-before-def). Although such randomly
generated corpora are not entirely representative of real-life bugs, they have been
used to train models that can catch real-life bugs.

When evaluating variable misuse models — like those presented in this section
— they achieve relatively high accuracy over randomly generated corpora with ac-
curacies of up to 75% (Hellendoorn et al, 2019b). However, in the author’s experi-

https://github.com/spulec/moto

22 Graph Neural Networks in Program Analysis 493

ence for real-life bugs — while some variable misuse bugs are recalled — precision
tends to be low making them impractical for deployment. Improving upon this is
an important open research problem. Nevertheless, actual bugs have been caught in
practice. Figure 22.2 shows such an example caught by a GNN-based variable mis-
use detector. Here, the developer incorrectly passed identity pool instead of iden-
tity pool id as the exception argument when identity pool was None (no pool with
the requested id could be found). The GNN-based black-box analysis seems to have
learned to “understand” that it is unlikely that the developer’s intention is to pass
None to the ResourceNotFoundError constructor and instead suggests that it should
be replaced by identity pool id. This is without ever formulating a formal specifica-
tion or creating a symbolic program analysis rule.

22.6 Case Study 2: Predicting Types in Dynamically Typed
Languages

Types are one of the most successful innovations in programming languages. Specif-
ically, type annotations are explicit specifications over the valid values a variable can
take. When a program type checks, we get a formal guarantee that the values of vari-
ables will only take the values of the annotated type. For example, if a variable has
an int annotation, it must contain integers but not strings, floats, etc. Furthermore,
types can help coders understand code more easily and software tools such as auto-
completion and code navigation to be more precise. However, many programming
languages either have to decide to forgo the guarantees provided by types or require
their users to explicitly provide type annotations.

To overcome these limitations, specification inference methods can be used to
predict plausible type annotations and bring back some of the advantages of typed
code. This is especially useful in code with partial contexts (e.g., a standalone snip-
pet of code in a webpage) or optionally typed languages. This section looks into
Python, which provides an optional mechanism for defining type annotations. For
example, content in Figure 22.1 can be annotated as content: str in line 1 to indi-
cate that the developer expects that it will only contain string values. These annota-
tions can then be used by type checkers, such as mypy (mypy Contributors, 2021)
and other developer tools and code editors. This is the probabilistic type inference
problem, first proposed by (Raychev et al, 2015). Here we use the GRAPH2CLASS
GNN-based formulation of (Allamanis et al, 2020) treating this as a classification
task over the symbols of the program similar to (Hellendoorn et al, 2018). Pandi
et al (2020) offer an alternative formulation of the problem.

For type checking methods to operate explicit types annotations need to be pro-
vided by a user. When those are not present, type checking may not be able to
function and provide any guarantees about the program. However, this misses the
opportunity to probabilistically reason over the types of the program from other
sources of information – such as variable names and comments. Concretely, in the
example of Figure 22.1, it would be reasonable to assume that min len and max len

494 Miltiadis Allamanis

have an integer type given their names and usage. We can then use this “educated
guess” to type check the program and retrieve back some guarantees about the pro-
gram execution.

Such models can find multiple applications. For example, they can be used in
recommendation systems that help developers annotate a code base. They may help
developers find incorrect type annotations or allow editors to provide assistive fea-
tures — such as autocomplete — based on the predicted types. Or they may offer
“fuzzy” type checking of a program (Pandi et al, 2020).

At its simplest form, predicting types is a node classification task over the subset
of symbol nodes. Let Vs be the set of nodes of “symbol” type in the heterogeneous
graph of a program. Let also, Z be a fixed vocabulary of type annotations, along with
a special Any type2. We can then use the node embeddings of every node v 2 Vs to
predict the possible type of each symbol.

p(s j : t) = softmax
t 02Z

⇣
Et

>hvs j
+bt

⌘
,

i.e., the inner product of each symbol node embedding with a learnable type embed-
ding Et for each type t 2 T plus a learnable bias bt . Training can then be performed
by minimizing some classification loss, such as the cross entropy loss, over a corpus
of (partially) annotated code.

Type Checking The type prediction problem is a specification inference problem
(Section 22.2) and the predicted type annotations can be passed to a standard type
checking tool which can verify that the predictions are consistent with the source
code’s structure (Allamanis et al, 2020) or search for the most likely prediction
that is consistent with the program’s structure (Pradel et al, 2020). This approach
allows to reduce false positives, but does not eliminate them. A trivial example is
an identity function def foo(x): return x. A machine learning model may incorrectly
deduce that x is a str and that foo returns a str. Although the type checker will
consider this prediction type-correct it is hard to justify as correct in practice.

Training The type prediction model discussed in this section can be trained in a
supervised fashion. By scraping large corpora of code, such as open-source code
found on GitHub3, we can collect thousands of type-annotated symbols. By strip-
ping those type annotations from the original code and using them as a ground truth
a training and validation set can be generated.

Such systems have shown to achieve a reasonably high accuracy (Allamanis et al,
2020) but with some limitations: type annotations are highly structured and sparse.
For example Dict[Tuple[int, str], List[bool]] is a valid type annotation that may
appear infrequently in code. New user-defined types (classes) will also appear at test
time. Thus, treating type annotations as district classes of a classification problem

2 The type Any representing the top of the type lattice and is somewhat analogous to the special
UNKNOWN token used in NLP.
3 Automatically scraped code corpora are known to suffer from a large number of duplicates (Al-
lamanis, 2019). When collecting such corpora special care is needed to remove those duplicates to
ensure that the test set is not contaminated with training examples.

22 Graph Neural Networks in Program Analysis 495

1 def __init__(
2 self,
3 - embedding_dim: float = 768,
4 - ffn_embedding_dim: float = 3072,
5 - num_attention_heads: float = 8,
6 + embedding_dim: int = 768,
7 + ffn_embedding_dim: int = 3072,
8 + num_attention_heads: int = 8,
9 dropout: float = 0.1,

10 attention_dropout: float = 0.1,

Fig. 22.3: A diff snippet from the incorrect type annotation caught by Typilus (Al-
lamanis et al, 2020) in the open-source fairseq library.

is prone to severe class imbalance issues and fails to capture information about the
structure within types. Adding new types to the model can be solved by employing
meta-learning techniques such as those used in Typilus (Allamanis et al, 2020; Mir
et al, 2021), but exploiting the internal structure of types and the rich type hierarchy
is still an open research problem.

Applications of type prediction models include suggesting new type annotations
to previously un-annotated code but can also be used for other downstream tasks
that can exploit information for a probabilistic estimate of the type of some symbol.
Additionally, such models can help find incorrect type annotations provided by the
users. Figure 22.3 shows such an example from Typilus (Allamanis et al, 2020).
Here the neural model “understands” from the parameter names and the usage of the
parameters (not shown) that the variables cannot contain floats but instead should
contain integers.

22.7 Future Directions

GNNs for program analysis is an exciting interdisciplinary field of research combin-
ing ideas of symbolic AI, programming language research, and deep learning with
many real-life applications. The overarching goal is to build analyses that can help
software engineers build and maintain the software that permeates every aspect of
our lives. Still there are many open challenges that need to be addressed to deliver
upon this promise.

From a program analysis and programming language perspective a lot of work is
needed to bridge the domain expertise of that community to machine learning. What
kind of learned program analysis can be useful to coders? How can existing program
analyses be improved using learned components? What are the inductive biases that
machine learning models need to incorporate to better represent program-related
concepts? How should learned program analyses be evaluated amidst the lack of
large annotated corpora? Until recently, program analysis research has limited itself

496 Miltiadis Allamanis

to primarily using the formal structure of the program, ignoring ambiguous informa-
tion in identifiers and code comments. Researching analyses that can better leverage
this information may light new and fruitful directions to help coders across many
application domains.

Crucially, the question of how to integrate formal aspects of program analyses
into the learning process is still an open question. Most specification inference work
(e.g. Section 22.6) commonly treats the formal analyses as a separate pre- or post-
processing step. Integrating the two viewpoints more tightly will create better, more
robust tools. For example, researching better ways to incorporate (symbolic) con-
straints, search, and optimization concepts within neural networks and GNNs will
allow for better learned program analyses that can learn to better capture program
properties.

From a software engineering research additional research is needed for the user
experience (UX) of the program analysis results presented to users. Most of the
existing machine learning models do not have performance characteristics that al-
low them to work autonomously. Instead they make probabilistic suggestions and
present them to users. Creating or finding the affordances of the developer environ-
ment that allow to surface probabilistic observations and communicate the proba-
bilistic nature of machine learning model predictions will significantly help accel-
erate the use of learned program analyses.

Within the research area of GNNs there are many open research questions. GNNs
have shown the ability to learn to replicate some of the algorithms used in common
program analysis techniques (Veličković et al, 2019) but with strong supervision.
How can complex algorithms be learned with GNNs using just weak supervision?
Additionally, existing techniques often lack the representational capabilities of for-
mal methods. Combinatorial concepts found in formal methods, such as sets and
lattices lack direct analogues in deep learning. Researching richer combinatorial
— and possibly non-parametric — representations will provide valuable tools for
learning program analyses.

Finally, common themes in deep learning also arise within this domain:

• The explainability of the decisions and warnings raised by learned program
analyses is important to coders who need to understand them and either mark
them as false positives or address them appropriately. This is especially impor-
tant for black-box analyses.

• Traditional program analyses offer explicit guarantees about a program’s behav-
ior even within adversarial settings. Machine learning-based program analyses
relax many of those guarantees towards reducing false positives or aiming to
provide some value beyond the one offered by formal methods (e.g. use am-
biguous information). However, this makes these analyses vulnerable to adver-
sarial attacks (Yefet et al, 2020). Retrieving some form of adversarial robustness
is still desirable for learned program analyses and is still an open research prob-
lem.

• Data efficiency is also an important problem. Most existing GNN-based pro-
gram analysis methods either make use of relatively large datasets of annotated
code (Section 22.6) or use unsupervised/self-supervised proxy objectives (Sec-

22 Graph Neural Networks in Program Analysis 497

tion 22.5). However, many of the desired program analyses do not fit these
frameworks and would require at least some form of weak supervision.
Pre-training on graphs is one promising direction that could address this prob-
lem, but has so far is focused on homogeneous graphs, such as social/cita-
tion networks and molecules. However, techniques developed for homogeneous
graphs, such as the pre-training objectives used, do not transfer well to hetero-
geneous graphs like those used in program analysis.

• All machine learning models are bound to generate false positive suggestions.
However when models provide well-calibrated confidence estimates, sugges-
tions can be accurately filtered to reduce false positives and their confidence
better communicated to the users. Researching neural methods that can make
accurate and calibrated confidence estimates will allow for greater impact of
learned program analyses.

Acknowledgements The author would like to thank Earl T. Barr for useful discussions and feed-
back on drafts of this chapter.

Editor’s Notes: Program analysis is one of the important downstream tasks
of graph generation (Chapter 11). The main challenging problem of pro-
gram analysis lies in graph representation learning (Chapter 2), which inte-
grates the relationships and entities of the program. On basis of these graph
representations, heterogeneous GNN (Chapter 16) and other variants can be
used to learn the embedding of each node for task-specific neural networks.
It has achieved state-of-art performances in bug detection and probabilistic
type inference. There are also many emerging problems in program analy-
sis, e.g. explainability (Chapter 7) of decisions and warnings, and adversar-
ial robustness (Chapter 8).

