
Chapter 21
Graph Neural Networks in Natural Language
Processing

Bang Liu, Lingfei Wu

Abstract Natural language processing (NLP) and understanding aim to read from
unformatted text to accomplish different tasks. While word embeddings learned by
deep neural networks are widely used, the underlying linguistic and semantic struc-
tures of text pieces cannot be fully exploited in these representations. Graph is a
natural way to capture the connections between different text pieces, such as enti-
ties, sentences, and documents. To overcome the limits in vector space models, re-
searchers combine deep learning models with graph-structured representations for
various tasks in NLP and text mining. Such combinations help to make full use of
both the structural information in text and the representation learning ability of deep
neural networks. In this chapter, we introduce the various graph representations that
are extensively used in NLP, and show how different NLP tasks can be tackled from
a graph perspective. We summarize recent research works on graph-based NLP, and
discuss two case studies related to graph-based text clustering, matching, and multi-
hop machine reading comprehension in detail. Finally, we provide a synthesis about
the important open problems of this subfield.

21.1 Introduction

Language serves as a cornerstone of human cognition. Enable machines to under-
stand natural language is at the very heart of machine intelligence. Natural language
processing (NLP) concerns with the interaction between machines and human lan-
guages. It is a critical subfield of computer science, linguistics, and artificial intel-
ligence (AI). Ever since the early research about machine translation in the 1950s
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until nowadays, NLP has been playing an essential role in the research of machine
learning and artificial intelligence.

NLP has a wide range of applications in the life and business of modern society.
Critical NLP applications include but not limited to: machine translation applica-
tions that aim to translate text or speech from a source language to another tar-
get language (e.g., Google Translation, Yandex Translate); chatbots or virtual assis-
tants that conduct an on-line chat conversation with a human agent (e.g., Apple Siri,
Microsoft Cortana, Amazon Alexa); search engines for information retrieval (e.g.,
Google, Baidu, Bing); question answering (QA) and machine reading comprehen-
sion in different fields and applications (e.g., open-domain question answering in
search engines, medical question answering); knowledge graphs and ontologies that
extract and represent knowledge from multi-sources to improve various applications
(e.g., DBpedia (Bizer et al, 2009), Google Knowledge Graph); and recommender
systems in E-commerce based on text analysis (e.g., E-commerce recommendation
in Alibaba and Amazon). Therefore, AI breakthroughs in NLP are big for business.

Two crucial research problems lie at the core of NLP: i) how to represent natural
language texts in a format that computers can read; and ii) how to compute based
on the input format to understand the input text pieces. We observe that researchers’
ideas on representing and modeling text keep evolving during the long history of
NLP development.

Up to the 1980s, most NLP systems were symbolic-based. Different text pieces
were considered as symbols, and the models for various NLP tasks were imple-
mented based on complex sets of hand-written rules. For example, classic rule-based
machine translation (RBMT) involves a host of rules defined by linguists in gram-
mar books. Such systems include Systran, Reverso, Prompt, and LOGOS (Hutchins,
1995). Rule-based approaches with symbolic representations are fast, accurate, and
explainable. However, acquiring the rules for different tasks is difficult and needs
extensive expert efforts.

Starting in the late 1980s, statistical machine learning algorithms brought revolu-
tion to NLP research. In statistical NLP systems, usually a piece of text is considered
as a bag of its words, disregarding grammar and even word order but keeping multi-
plicity (Manning and Schutze, 1999). Many of the notable early successes occurred
in machine translation due to statistical models were developed. Statistical systems
were able to take advantage of multilingual textual corpora. However, it is hard to
model the semantic structure and information of human language by simply consid-
ering the text as a bag of words.

Since the early 2010s, the field of NLP has shifted to neural networks and deep
learning, where word embeddings techniques such as Word2Vec (Mikolov T, 2013)
or GloVe (Pennington et al, 2014) were developed to represent words as fixed vec-
tors. We have also witnessed an increase in end-to-end learning for tasks such as
question answering. Besides, by representing text as a sequence of word embedding
vectors, different neural network architectures, such as vanilla recurrent neural net-
works (Pascanu et al, 2013), Long Short-Term Memory (LSTM) networks (Greff
et al, 2016), or convolutional neural networks (Dos Santos and Gatti, 2014), were
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applied to model text. Deep learning has brought a new revolution in NLP, greatly
improving the performance of various tasks.

In 2018, Google introduced a neural network-based technique for NLP pre-
training called Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al, 2019). This model has enabled many NLP tasks to achieve superhu-
man performance in different benchmarks and has spawned a series of follow-up
studies on pre-training large-scale language models (Qiu et al, 2020b). In such ap-
proaches, the representations of words are contextual sensitive vectors. By taking the
contextual information into account, we can model the polysemy of words. How-
ever, large-scale pre-trained language models require massive consumption of data
and computing resources. Besides, existing neural network-based models lack ex-
plainability or transparency, which can be a major drawback in health, education,
and finance domains.

Along with the evolving history of text representations and computational mod-
els, from symbolic representations to contextual-sensitive embeddings, we can see
an increase of semantical and structural information in text modeling. A key ques-
tion is: how to further improve the representation of various text pieces and the
computational models for different NLP tasks? We argue that representing text as
graphs and applying graph neural networks to NLP applications is a highly promis-
ing research direction. Graphs are of great significance to NLP research. The reasons
are multi-aspect, which will be illustrated in the following.

First, our world consists of things and the relations between them. The ability to
draw logical conclusions about how different things are related to one another, or
so-called relational reasoning, is central to both human and machine intelligence. In
NLP, understanding human language also requires modeling different text pieces
and reasoning over their relations. Graph provides a unified format to represent
things and the relations between them. By modeling text as graphs, we can char-
acterize the syntactic and semantic structures of different texts and perform explain-
able reasoning and inference over such representations.

Second, the structure of languages is intrinsically compositional, hierarchical,
and flexible. From corpus to documents, paraphrases, sentences, phrases, and words,
different text pieces form a hierarchical semantic structure, in which a higher-level
semantic unit (e.g., a sentence) can be further decomposed into more fine-grained
units (e.g., phrases and words). Such structural nature of human languages can be
characterized by tree structures. Furthermore, due to the flexibility of languages, the
same meaning can be expressed in different sentences, such as active and passive
voices. However, we can unify the representation of varying sentences by seman-
tic graphs like Abstract Meaning Representation (AMR) (Schneider et al, 2015) to
make NLP models more robust.

Last but not least, graphs have always been extensively utilized and formed an
essential part of NLP applications ranging from syntax-based machine translation,
knowledge graph-based question answering, abstract meaning representation for
common sense reasoning tasks, and so on. On the other hand, with the vigorous
research on graph neural networks, the recent research trend of combining graph
neural networks and NLP has become more and more prosperous. Moreover, by uti-
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lizing the general representation ability of graphs, we can incorporate multi-modal
information (e.g., images or videos) to NLP, integrating different signals, modeling
the world contexts and dynamics, and jointly learning multi-tasks.

In this chapter, we present a brief overview of the status of graphs in NLP. We
will introduce and categorize different graph representations adopted and show how
NLP tasks can be mapped onto graph-based problems and solved by graph neural
network-based approaches in Sec. 21.2. After that, we will discuss two case studies.
The first case study in Sec. 21.3 introduces graph-based text clustering and match-
ing for hot events discovery and organization. The second one in Sec. 21.4 presents
graph-based multi-hop machine reading comprehension. We then provide a syn-
thesis about the important open problems of this subfield in Sec. 22.7. Finally, we
conclude this chapter in Sec. 21.6.

Concurrently, a few very recent survey and tutorials (Wu et al, 2021c,b; Vashishth
et al, 2019) aim to comprehensively introduce the historical and modern develop-
ments of machine learning (especially deep learning) on graphs for NLP. In addi-
tion, a recent released Graph4NLP library 1 is the first and an easy-to-use library at
the intersection of Deep Learning on Graphs and Natural Language Processing. It
provides both full implementations of state-of-the-art models for data scientists and
also flexible interfaces to build customized models for researchers and developers
with whole-pipeline support.

21.2 Modeling Text as Graphs

In this section, we will provide an overview of different graph representations in
NLP. After that, we will discuss how different NLP tasks can be tackled from a
graph perspective.

21.2.1 Graph Representations in Natural Language Processing

Various graph representations have been proposed for text modeling. Based on the
different types of graph nodes and edges, a majority of existing works can be gen-
eralized into five categories: text graphs, syntactic graphs, semantic graphs, knowl-
edge graphs, and hybrid graphs.

Text graphs use words, sentences, paragraphs, or documents as nodes and estab-
lish edges by word co-occurrence, location, or text similarities. Rousseau and Vazir-
giannis (2013); Rousseau et al (2015) represented a document as graph-of-word,
where nodes represent unique terms and directed edges represent co-occurrences
between the terms within a fixed-size sliding window. Wang et al (2011) connected
terms with syntactic dependencies. Schenker et al (2003) connected two words by

1 Graph4NLP library can be accessed via this link https://github.com/graph4ai/
graph4nlp.

https://github.com/graph4ai/graph4nlp
https://github.com/graph4ai/graph4nlp
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a directed edge if one word immediately precedes another word in the document
title, body, or link. The edges are categorized by the three different types of linking.
Balinsky et al (2011); Mihalcea and Tarau (2004); Erkan and Radev (2004) con-
nected sentences if they near to each other, share at least one common keyword, or
the sentence similarity is above a threshold. Page et al (1999) connected web docu-
ments by hyperlinks. Putra and Tokunaga (2017) constructed directed graphs of sen-
tences for text coherence evaluation. It utilized sentence similarities as weights and
connects sentences with various constraints about sentence similarity or location.
Text graphs can be established quickly, but they can not characterize the syntactic
or semantic structure of sentences or documents.

Syntactic graphs (or trees) emphasize the syntactical dependencies between
words in a sentence. Such structural representations of sentences are achieved by
parsing, which constructs the syntactic structure of a sentence according to a formal
grammar. Constituency parsing tree and dependency parsing graph are two types
of syntactic representations of sentences that use different grammars (Jurafsky,
2000). Based on syntactic analysis, documents can also be structured. For exam-
ple, Leskovec et al (2004) extracted subject-predicate-object triples from text based
on syntactic analysis and merges them to form a directed graph. The graph was fur-
ther normalized by utilizing WordNet (Miller, 1995) to merge triples belonging to
the same semantic pattern.

While syntactic graphs show the grammatical structure of text pieces, seman-
tic graphs aim to represent the meaning being conveyed. A model of semantics
could help disambiguate the meaning of a sentence when multiple interpretations
are valid. Abstract Meaning Representation (AMR) graphs (Banarescu et al, 2013)
are rooted, labeled, directed, acyclic graphs (DAGs), comprising whole sentences.
Sentences that are similar in meaning will be assigned the same AMR, even if they
are not identically worded. In this way, AMR graphs abstract away from syntactic
representations. The nodes in an AMR graph are AMR concepts, which are either
English words, PropBank framesets (Kingsbury and Palmer, 2002), or special key-
words. The edges are approximately 100 relations, including frame arguments fol-
lowing PropBank conventions, semantic relations, quantities, date-entities, lists, and
so on.

Knowledge graphs (KGs) are graphs of data intended to accumulate and convey
knowledge of the real world. The nodes of a KG represent entities of interest, and
the edges represent relations between these entities (Hogan et al, 2020). Prominent
examples of KGs include DBpedia (Bizer et al, 2009), Freebase (Bollacker et al,
2007), Wikidata (Vrandečić and Krötzsch, 2014) and YAGO (Hoffart et al, 2011),
covering various domains. KGs are broadly applied for commercial use-cases, such
as web search in Bing (Shrivastava, 2017) and Google (Singhal, 2012), commerce
recommendation in Airbnb (Chang, 2018) and Amazon (Krishnan, 2018), and social
networks like Facebook (Noy et al, 2019) and LinkedIn (He et al, 2016b). There are
also graph representations that connect terms in a document to real-world entities or
concepts based on KGs such as DBpedia (Bizer et al, 2009) and WordNet (Miller,
1995). For example, Hensman (2004) identifies the semantic roles in a sentence with
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WordNet and VerbNet, and combines these semantic roles with a set of syntactic
rules to construct a concept graph.

Hybrid graphs contain multiple types of nodes and edges to integrate hetero-
geneous information. In this way, the various text attributes and relations can be
jointly utilized for NLP tasks. Rink et al (2010) utilized sentences as nodes and en-
codes lexical, syntactic, and semantic relations in edges. Jiang et al (2010) extracted
tokens, syntactic structure nodes, semantic nodes and so on from each sentence and
link them by different types of edges. Baker and Ellsworth (2017) built a sentence
graph based on Frame Semantics and Construction Grammar.

21.2.2 Tackling Natural Language Processing Tasks from a Graph
Perspective

Understanding natural language is essentially understanding different textual ele-
ments and their relationships. Therefore, we can tackle different NLP tasks from
a graph perspective based on the different representations we have introduced. In
recent years, many research works apply graph neural networks (Wu et al, 2021d)
to solve NLP problems. A majority of them are actually solving the following prob-
lems: node classification, link prediction, graph classification, graph matching, com-
munity detection, graph-to-text generation, and reasoning over graphs.

For tasks focusing on assigning labels to words or phrases, they can be mod-
eled as node classification. Cetoli et al (2017) showed that dependency trees play a
positive role for named entity recognition by using a graph convolutional network
(GCN) (Kipf and Welling, 2017b) to boost the results of a bidirectional LSTM. In
(Gui et al, 2019), a GNN-based approach was proposed to alleviate the word ambi-
guity in Chinese NER. Lexicons are used to construct the graph and provide word-
level features. Yao et al (2019) proposed a text classification method termed Text
Graph Convolutional Networks. It builds a heterogeneous word document graph for
a whole corpus and turns document classification into a node classification problem.

In addition to node classification, predicting the relationships between two el-
ements is also an essential problem in NLP research, especially for knowledge
graphs. Zhang and Chen (2018b) proposed a novel link prediction framework to
simultaneously learn from local enclosing subgraphs, embeddings, and attributes
based on graph neural networks. Rossi et al (2021) presented an extensive com-
parative analysis on link prediction models based on KG embeddings. They found
that the graph structural features play paramount effects on the effectiveness of link
prediction models. Guo et al (2019d) introduced the Attention Guided Graph Con-
volutional Networks (AGGCNs) for relation extraction tasks. The model operates
directly on the full dependency trees and learns to distill the useful information
from them in an end-to-end fashion.

Graph classification techniques are applied to text classification problems to uti-
lize the intrinsic structure of texts. In (Peng et al, 2018), a graph-CNN based deep
learning model was proposed for text classification. It first converts texts to graph-
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of-words and then utilizes graph convolution operations to convolve the word graph.
Huang et al (2019a); Zhang et al (2020d) proposed graph-based methods for text
classification, where each text owns its structural graph and text level word interac-
tions can be learned.

For NLP tasks involving a pair of text, graph matching techniques can be applied
to incorporate the structural information of a text. Liu et al (2019a) proposed the
Concept Interaction Graph to represent an article as a graph of concepts. It then
matches a pair of articles by comparing the sentences that enclose the same concept
node through a series of encoding techniques and aggregate the matching signals
through a graph convolutional network. Haghighi et al (2005) represented sentences
as directed graphs extracted from a dependency parser and develops a learned graph
matching approach to approximating textual entailment. Xu et al (2019e) formu-
lated the KB-alignment task as a graph matching problem, and proposed a graph
attention-based approach. It first matches all entities in two KGs, and then jointly
models the local matching information to derive a graph-level matching vector.

Community detection provides a means of coarse-graining the complex interac-
tions or relations between nodes, which is suitable for text clustering problems. For
example, Liu et al (2017a, 2020a) described a news content organization system
at Tencent which discovers events from vast streams of breaking news and evolves
news story structures in an online fashion. They constructed a keyword graph and
applied community detection over it to perform coarse-grained keyword-based text
clustering. After that, they further constructed a document graph for each coarse-
grained clusters, and applied community detection again to get fine-grained event-
level document clusters.

The task of graph-to-text generation aims at producing sentences that preserve
the meaning of input graphs (Song et al, 2020b). Koncel-Kedziorski et al (2019)
introduced a graph transforming encoder which can leverage the relational struc-
ture of knowledge graphs and generate text from them. Wang et al (2020k); Song
et al (2018) proposed graph-to-sequence models (Graph Transformer) to generate
natural language texts from AMR graphs. Alon et al (2019a) leveraged the syntactic
structure of programming languages to encode source code and generate text.

Last but not least, reasoning over graphs plays a key role in multi-hop ques-
tion answering (QA), knowledge-based QA, and conversational QA tasks. Ding
et al (2019a) presented a framework CogQA to tackle multi-hop machine reading
problem at scale. The reasoning process is organized as a cognitive graph, reaching
entity-level explainability. Tu et al (2019) represented documents as a heterogeneous
graph and employ GNN-based message passing algorithms to accumulate evidence
on the proposed graph to solve the multi-hop reading comprehension problem across
multiple documents. Fang et al (2020) created a hierarchical graph by constructing
nodes on different levels of granularity (questions, paragraphs, sentences, entities),
and proposed Hierarchical Graph Network (HGN) for multi-hop QA. Chen et al
(2020n) dynamically constructed a question and conversation history aware context
graph at each conversation turn and utilized a Recurrent Graph Neural Network and
a flow mechanism to capture the conversational flow in a dialog.
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Fig. 21.1: The story tree of “2016 U.S. presidential election”. Figure credit: Liu et al
(2020a).

In the following, we will present two case studies to illustrate how graphs and
graph neural networks can be applied to different NLP tasks with more details.

21.3 Case Study 1: Graph-based Text Clustering and Matching

In this case study, we will describe the Story Forest intelligent news organization
system designed for fine-grained hot event discovery and organization from web-
scale breaking news (Liu et al, 2017a, 2020a). Story Forest has been deployed in the
Tencent QQ Browser, a mobile application that serves more than 110 million daily
active users. Specifically, we will see how a number of graph representations are
utilized for fine-grained document clustering and document pair matching and how
GNN contributes to the system.

21.3.1 Graph-based Clustering for Hot Events Discovery and
Organization

In the fast-paced modern society, tremendous volumes of news articles are con-
stantly being generated by different media providers, leading to information explo-
sion. In the meantime, the large quantities of daily news stories that can cover differ-
ent subjects and contain redundant or overlapping data are becoming increasingly
difficult for readers to digest. Many news app users feel that they are overwhelmed
by extremely repetitive information about a variety of current hot events while still
struggling to get information about the events in which they are genuinely interested.
Besides, search engines conduct document retrieval on the basis of user-entered re-
quests. They do not, however, provide users with a natural way to view trending
topics or breaking news.
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Fig. 21.2: An overview of the system architecture of Story Forest. Figure credit: Liu
et al (2020a).

In (Liu et al, 2017a, 2020a), a novel news organization system named Story For-
est was proposed to address the aforementioned challenges. The key idea of the
Story Forest system is that, instead of providing users a list of web articles based on
input queries, it proposes the concept of “event” and “story”, and propose to orga-
nize tremendous of news articles into story trees to organize and track evolving hot
events, revealing the relationships between them and reduce the redundancies. An
event is a set of news articles reporting the same piece of real-world breaking news.
And a story is a tree of related events that report a series of evolving real-world
breaking news.

Figure 21.1 presents an example of a story tree, which showcases the story of
“2016 U.S. presidential election”. There are 20 nodes in the story tree. Each node
indicates an event in the U.S. election in 2016, and each edge represents a temporal
development relationship or a logical connection between two breaking news events.
For example, event 1 is talking about Trump becomes a presidential candidate, and
event 20 says Donald Trump is elected president. The index number on each node
represents the event sequence over the timeline. The story tree contains 6 paths,
where the main path 1 ! 20 captures the process of the presidential election, the
branch 3 ! 6 describes Hilary’s health conditions, the branch 7 ! 13 is focusing
on the television debates, 14 ! 18 are about “mail door” investigation, etc. As we
can see, users can easily understand the logic of news reports and learn the key facts
quickly by modeling the evolutionary and logical structure of a story into a story
tree.
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The story trees are constructed from web-scale news articles by the Story Forest
system. The system’s architecture is shown in Fig. 21.2. It consists primarily of four
components: preprocessing, keyword graph construction, clustering documents to
events, and growing story trees with events. The overall process is split into eight
stages. First, a range of NLP and machine learning tools will be used to process the
input news document stream, including document filtering and word segmentation.
Then the system extracts keywords, construct/update the co-occurrence graph of
keywords, and divide the graph into sub-graphs. After that, it utilizes EventX, a
graph-based fine-grained clustering algorithm to cluster documents into fine-grained
events. Finally, the story trees (formed previously) are updated by either inserting
each discovered event into an existing story tree at the right place or creating a new
story tree if the event does not belong to any current story.

We can observe from Fig. 21.2 that a variety of text graphs are utilized in
the Story Forest system. Specifically, the EventX clustering algorithm is based on
two types of text graphs: keyword co-occurrence graph and document relation-
ship graph. The keyword co-occurrence graph connects two keywords if they co-
occurred for more than n times in a news corpus, where n is a hyperparameter. On
the other hand, the document relationship graph connects document pairs based on
whether two documents are talking about the same event. Based on such two types
of text graphs, EventX can accurately extract fine-grained document clusters, where
each cluster contains a set of documents that focus on the same event.

In particular, EventX performs two-layer graph-based clustering to extract events.
The first layer performs community detection over the constructed keyword co-
occurrence graph to split it into sub-graphs, where each sub-graph the keywords for
a specific topic. The intuition for this step is that keywords related to a common topic
usually will frequently appear in documents belonging to that topic. For example,
documents belonging to the topic “2016 U.S. presidential election” will often men-
tion keywords such as “Donald Trump”, “Hillary Clinton”, “election”, and so on.
Therefore, highly correlated keywords will be linked to each other and form dense
subgraphs, whereas keywords that are not highly related will have sparse or no links.
The goal here is to extract dense keyword subgraphs linked to various topics. After
obtaining the keyword subgraphs (or communities), we can assign each document
to its most correlated keyword subgraph by calculating their TF-IDF similarity. At
this point, we have grouped documents by topics in the first layer clustering.

In the second layer, EventX constructs a document relationship graph for each
topic obtained in the first layer. Specifically, a binary classifier will be applied to
each pair of documents in a topic to detect whether two documents are talking about
the same event. If yes, we connect the pair of documents. In this way, the set of
documents in a topic turn into a document relationship graph. After that, the same
community detection algorithm in the first layer will be applied to the document
relationship graph, splitting it into sub-graphs where each sub-graph now represents
a fine-grained event instead of a coarse-grained topic. Since the number of news
articles belonging to each topic is significantly less after the first-layer document
clustering, the graph-based clustering on the second layer is highly efficient, making
it applicable for real-world applications. After extracting fine-grained events, we can
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Fig. 21.3 An example to
show a piece of text and its
Concept Interaction Graph
representation. Figure credit:
Liu et al (2019a)

Text: Concept Interaction Graph:

[1] Rick asks Morty to travel with him
      in the universe.
[2] Morty doesn't want to go as Rick always
      brings him dangerous experiences.
[3] However, the destination of this journey
      is the Candy Planet, which is an fascinating
      place that attracts Morty.
[4] The planet is full of delicious candies.
[5] Summer wishes to travel with Rick.
[6] However, Rick doesn't like to travel with Summer.

Rick
Morty

Rick
Summer

Morty
Candy 
Planet

[1, 2] [5, 6]

[3, 4]

update the story trees by inserting an event to its related story or creating a new story
tree if it doesn’t belong to any existing stories. We refer to (Liu et al, 2020a) for more
details about the Story Forest system.

21.3.2 Long Document Matching with Graph Decomposition and
Convolution

During the construction of the document relationship graph in the Story Forest sys-
tem, a fundamental problem is determining whether two news articles are talking
about the same event. It is a problem of semantic matching, which is a core research
problem that lies at the core of many NLP applications, including search engines,
recommender systems, news systems, etc. However, previous research about se-
mantic matching is mainly designed for matching sentence pairs (Wan et al, 2016;
Pang et al, 2016), e.g., for paraphrase identification, answer selection in question-
answering, and so on. Due to the long length of news articles, such methods are not
suitable and do not perform well on document matching (Liu et al, 2019a).

To solve this challenge, Liu et al (2019a) presented a divide-and-conquer strategy
to align a pair of documents and shift deep text comprehension away from the cur-
rently dominant sequential modeling of language elements and toward a new level
of graphical document representation that is better suited to longer articles. Specif-
ically, Liu et al (2019a) proposed the Concept Interaction Graph (CIG) as a way to
view a document as a weighted graph of concepts, with each concept node being
either a keyword or a group of closely related keywords. Furthermore, two con-
cept nodes will be connected by a weighted edge which indicates their interaction
strength.

As a toy example, Fig. 21.3 shows how to convert a document into a Concept In-
teraction Graph (CIG). First, we extract keywords such as Rick, Morty, and Summer
from the document using standard keyword extraction algorithms, e.g., TextRank
(Mihalcea and Tarau, 2004). Second, similar to what we have done in the Story For-
est system, we can group keywords into sub-graphs by community detection. Each
keyword community turns into a “concept” in the document. After extracting con-
cepts, we attach each sentence in the document to its most related concept node by
calculating the similarities between a sentence and each concept. In Fig. 21.3, sen-
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Fig. 21.4: An overview of our approach for constructing the Concept Interaction
Graph (CIG) from a pair of documents and classifying it by Graph Convolutional
Networks. Figure credit: Liu et al (2019a).

tences 5 and 6 are mainly talking about the relationship between Rick and Summer,
and are thus attached to the concept (Rick, Summer). Similarly, we can attach other
sentences to nodes, decomposing the content of a document into a number of con-
cepts. To construct edges, we represent each node’s sentence set as a concatenation
of the sentences attached to it and measure the edge weight between any two nodes
as the TF-IDF similarity between their sentence sets to create edges that show the
correlation between different concepts. An edge will be removed if its weight is be-
low a threshold. For a pair of documents, the process of converting them into a CIG
is similar. The only differences are that the keywords are from both documents, and
each concept node will have two sets of sentences from the two documents. As a re-
sult, we have represented the original document (or document pair) with a graph of
key concepts, each with a (or a pair of) sentence subset(s), as well as the interaction
topology among them.

The CIG representation of a document pair decomposes its content into multi-
ple parts. Next, we need to match the two documents based on such representation.
Fig. 21.4 illustrates the process of matching a pair of long documents. The matching
process consists of four steps: a) preprocessing the input document pair and trans-
form it into a CIG; b) matching the sentences from two documents over each node
to get local matching features; c) structurally transforming local matching features
by graph convolutional layers; and d) aggregating all the local matching features to
get the final result.

Specifically, for the local matching on each concept node, the inputs are the two
sets of sentences from two documents. As each node only contains a small portion
of the document sentences, the long text matching problems transform into short
text matching on a number of concept nodes. In (Liu et al, 2019a), two different
matching models are utilized: i) similarity-based matching, which calculate a vari-
ety of text similarities between two set of sentences; ii) Siamese matching, which
utilizes a Siamese neural network (Mueller and Thyagarajan, 2016) to encode the
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two sentence sets and get a local matching vector. After getting local matching re-
sults, the next question is: how to get an overall matching score? Liu et al (2019a)
aggregates the local matching vectors into a final matching score for the pair of ar-
ticles by utilizing the ability of the graph convolutional network filters (Kipf and
Welling, 2017b) to capture the patterns exhibited in the CIG at multiple scales. In
particular, the local matching vectors of the concept nodes are transformed by multi-
layer GCN layers to take the interaction structure between nodes (or concepts in two
documents) into consideration. After getting the transformed feature vectors, they
are aggregated by mean pooling to get a global matching vector. Finally, the global
matching vector will be fed into a classifier (e.g., a feed-forward neural network) to
get the final matching label or score. The local matching module, global aggregation
module, and the final classification module are trained end-to-end.

In (Liu et al, 2019a), extensive evaluations were performed to test the perfor-
mance of the proposed approach for document matching. A key discovery made
by (Liu et al, 2019a) is that the graph convolution operation significantly improves
the performance of matching, demonstrating the effect of applying graph neural
networks to the proposed text graph representation. The structural transformation
on the matching vectors via GCN can efficiently capture the semantic interactions
between sentences, and the transformed matching vectors better capture the seman-
tic distance over each concept node by integrating the information of its neighbor
nodes.

21.4 Case Study 2: Graph-based Multi-Hop Reading
Comprehension

In this case study, we further introduce how graph neural networks can be applied to
machine reading comprehension in NLP. Machine reading comprehension (MRC)
aims to teach machines to read and understand unstructured text like a human. It is a
challenging task in artificial intelligence and has great potential in various enterprise
applications. We will see that by representing text as a graph and applying graph
neural networks to it, we can mimic the reasoning process of human beings and
achieve significant improvements for MRC tasks.

Suppose we have access to a Wikipedia search engine, which can be utilized
to retrieve the introductory paragraph para[x] of an entity x. How can we answer
the question “Who is the director of the 2003 film which has scenes in it filmed
at the Quality Cafe in Los Angeles?” with the search engine? Naturally, we will
start with pay attention to related entities such as “Quality Cafe”, look up relevant
introductions through Wikipedia, and quickly locate “Old School” and “Gone in
60 Seconds” when it comes to Hollywood movies. By continuing to inquire about
the introduction of the two movies, we further found their director. The last step
is to determine which director it is. This requires us to analyze the semantics and
qualifiers of the sentence. After knowing that the movie is in 2003, we can make the
final judgment: “Todd Phillips” is the answer we want. Figure 21.5 illustrates such
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Abstract

We propose a new CogQA framework for
multi-hop question answering in web-scale
documents. Founded on the dual process the-
ory in cognitive science, the framework grad-
ually builds a cognitive graph in an iterative
process by coordinating an implicit extrac-
tion module (System 1) and an explicit rea-
soning module (System 2). While giving ac-
curate answers, our framework further pro-
vides explainable reasoning paths. Specifi-
cally, our implementation1 based on BERT
and graph neural network (GNN) efficiently
handles millions of documents for multi-hop
reasoning questions in the HotpotQA fullwiki
dataset, achieving a winning joint F1 score of
34.9 on the leaderboard, compared to 23.6 of
the best competitor.2

1 Introduction

Deep learning models have made significant
strides in machine reading comprehension and
even outperformed human on single paragraph
question answering (QA) benchmarks including
SQuAD (Wang et al., 2018b; Devlin et al., 2018;
Rajpurkar et al., 2016). However, to cross the
chasm of reading comprehension ability between
machine and human, three main challenges lie
ahead: 1) Reasoning ability. As revealed by ad-
versarial tests (Jia and Liang, 2017), models for
single paragraph QA tend to seek answers in sen-
tences matched by the question, which does not
involve complex reasoning. Therefore, multi-hop
QA becomes the next frontier to conquer (Yang
et al., 2018). 2) Explainability. Explicit rea-
soning paths, which enable verification of logi-
cal rigor, are vital for the reliability of QA sys-
tems. HotpotQA (Yang et al., 2018) requires
models to provide supporting sentences, which

1Codes: https://github.com/THUDM/CogQA
2https://hotpotqa.github.io, March 4, 2019
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Figure 1: An example of cognitive graph for multi-hop
QA. Each hop node corresponds to an entity (e.g., “Los
Angeles”) followed by its introductory paragraph. The
circles mean ans nodes, answer candidates to the ques-
tion. Cognitive graph mimics human reasoning pro-
cess. Edges are built when calling an entity to “mind”.
The solid black edges are the correct reasoning path.

means unordered and sentence-level explainabil-
ity, yet humans can interpret answers with step by
step solutions, indicating an ordered and entity-
level explainability. 3) Scalability. For any prac-
tically useful QA system, scalability is indis-
pensable. Existing QA systems based on ma-
chine comprehension generally follow retrieval-
extraction framework in DrQA (Chen et al., 2017),
reducing the scope of sources to a few paragraphs
by pre-retrieval. This framework is a simple com-
promise between single paragraph QA and scal-
able information retrieval, compared to human’s
ability to breeze through reasoning with knowl-
edge in massive-capacity memory (Wang et al.,
2003).

Therefore, insights on the solutions to these
challenges can be drawn from the cognitive pro-
cess of humans. Dual process theory (Evans,
1984, 2003, 2008; Sloman, 1996) suggests that our
brains first retrieve relevant information follow-
ing attention via an implicit, unconscious and intu-

Fig. 21.5: An example of cognitive graph for multi-hop QA. Each hop node cor-
responds to an entity (e.g., “Los Angeles”) followed by its introductory paragraph.
The circles mean ans nodes, answer candidates to the question. Cognitive graph
mimics human reasoning process. Edges are built when calling an entity to “mind”.
The solid black edges are the correct reasoning path. Figure credit: Ding et al
(2019a).

process. Answering the aforementioned question requires multi-hop reasoning over
different information, that is so-called multi-hop question answering.

In fact, “pay attention to related entities quickly” and “analyze the meaning of
sentences for inference” are two different thinking processes. In cognition, the well-
known “dual process theory” (Kahneman, 2011) believes that human cognition is
divided into two systems. System 1 is an implicit, unconscious and intuitive think-
ing system. Its operation relies on experience and association. System 2 performs
explicit, conscious and controllable reasoning process. This system uses knowledge
in working memory to perform slow but reliable logical reasoning. System 2 is the
embodiment of human advanced intelligence.

Guided by the dual process theory, the Cognitive Graph QA (CogQA) framework
was proposed in (Ding et al, 2019a). It adopts a directed graph structure, named
cognitive graph, to perform step-by-step deduction and exploration in the cognitive
process of multi-hop question answering. Figure 21.5 presents the cognitive graph
for answering the previously mentioned question. Denote the graph as G , each node
in G represents an entity or possible answer x, also interchangeably denoted as node
x. The solid black edges are the correct reasoning path to answer the question. The
cognitive graph is constructed by an extraction module that acts like System 1. It
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takes the introductory paragraph para[x] of entity x as input, and outputs answer
candidates (i.e., ans nodes) and useful next-hop entities (i.e., hop nodes) from the
paragraph. These new nodes gradually expand G , forming an explicit graph struc-
ture for System 2 reasoning module. During the expansion of G , the new nodes or
existing nodes with new incoming edges bring new clue about the answer. Such
nodes are referred as frontier nodes. For clue, it is a form-flexible concept, refer-
ring to information from predecessors for guiding System 1 to better extract spans.
To perform neural network-based reasoning over G instead of rule-based, System 1
also summarizes para[x] into an initial hidden representation vector when extract-
ing spans, and System 2 updates all paragraphs’ hidden vectors X based on graph
structure as reasoning results for downstream prediction.

The procedure of the framework CogQA is as follows. First, the cognitive graph
G is initialized with the entities mentioned in the input question Q, and the entities
are marked as initial frontier nodes. After initialization, a node x is popped from
frontier nodes, and then a two-stage iterative process is conducted with two models
S1 and S2 mimicking System 1 and System 2, respectively. In the first stage, the
System 1 module in CoQA extracts question-relevant entities, answers candidates
from paragraphs, and encodes their semantic information. Extracted entities are or-
ganized as a cognitive graph, which resembles the working memory. Specifically,
given x, CogQA collects clues[x,G ] from predecessor nodes of x, where the clues
can be sentences where x is mentioned. It further fetches introductory paragraph
para[x] in Wikipedia database W if any. After that, S1 generates sem[x,Q,clues],
which is the initial Xx (i.e., the embedding of x). If x is a hop node, then S1 finds hop
(e.g., entities) and answer spans in para[x]. For each hop span y, if y /2 G and y 2 W ,
then create a a new hop node for y and add it to G . If y 2 G but edge(x,y) /2 G , then
add a new edge (x,y) to G and mark node y as a frontier node, as it needs to be
revisited with new information. For each answer span y, a new answer node y and
edge (x,y) will be added to G . In the second stage, System 2 conducts the reason-
ing procedure over the graph and collects clues to guide System 1 to better extract
next-hop entities. In particular, the hidden representation X of all paragraphs will be
updated by S2. The above process is iterated until there is no frontier node in the
cognitive graph (i.e., all possible answers are found) or the graph is large enough.
Then the final answer is chosen with a predictor F based on the reasoning results
X from System 2.

The CogQA framework can be implemented as the system in Fig. 21.6. It utilizes
BERT (Devlin et al, 2019) as System 1 and GNN as System 2. For clues clues[x,G ],
they are the sentences in paragraphs of x’s predecessor nodes, from which x is ex-
tracted. We can observe from Fig. 21.6 that the input to BERT is the concatenation
of the question, the clues passed from predecessor nodes, and the introductory para-
graph of x. Based on these inputs, BERT outputs hop spans and answer spans, as
well as uses the output at position 0 as sem[x,Q,clues].

For System 2, CogQA utilizes a variant of GNN to update the hidden representa-
tions of all nodes. For each node x, its initial representation Xx 2 Rh is the semantic
vector sem[x,Q,clues] from System 1 (i.e., BERT). The updating formula of the
GNN layers are as follows:
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T1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T[SEP ]
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

TN
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T �
i

<latexit sha1_base64="ycagfIhPAcq9SuB1/HItSluEld4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0lU0GPRi8cK/YI2lM120y7d3YTdjVBC/4IXD4p49Q9589+4SXPQ1gcDj/dmmJkXxJxp47rfTmltfWNzq7xd2dnd2z+oHh51dJQoQtsk4pHqBVhTziRtG2Y47cWKYhFw2g2m95nffaJKs0i2zCymvsBjyUJGsMmk1pCdD6s1t+7mQKvEK0gNCjSH1a/BKCKJoNIQjrXue25s/BQrwwin88og0TTGZIrHtG+pxIJqP81vnaMzq4xQGClb0qBc/T2RYqH1TAS2U2Az0cteJv7n9RMT3vopk3FiqCSLRWHCkYlQ9jgaMUWJ4TNLMFHM3orIBCtMjI2nYkPwll9eJZ3LundVdx+va427Io4ynMApXIAHN9CAB2hCGwhM4Ble4c0Rzovz7nwsWktOMXMMf+B8/gCLgo3n</latexit>

T �
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

… …

[CLS] Tok1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

[SEP ]
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

… TokN
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Tok�
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

…

Question + clues[x,G] Paragraph[x]

Hop span

x
<latexit sha1_base64="T81e0FN4eiLN0l7csieDRUgh6Jc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix68diC/YA2lM120q7dbMLuRiyhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveRcWtX5arN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD5uOM/g==</latexit>

Prev2
<latexit sha1_base64="NHajn1S7d4tKGHbUVsWnUGCMXZ0=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cKthbaUDbbSbt2sxt2N4US+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MOFMG8/7dgpr6xubW8Xt0s7u3v5B+fCopWWqKDap5FK1Q6KRM4FNwwzHdqKQxCHHx3B0O/Mfx6g0k+LBTBIMYjIQLGKUGCu1GgrHvVqvXPGq3hzuKvFzUoEcjV75q9uXNI1RGMqJ1h3fS0yQEWUY5TgtdVONCaEjMsCOpYLEqINsfu3UPbNK342ksiWMO1d/T2Qk1noSh7YzJmaol72Z+J/XSU10HWRMJKlBQReLopS7Rrqz190+U0gNn1hCqGL2VpcOiSLU2IBKNgR/+eVV0qpV/Yuqd39Zqd/kcRThBE7hHHy4gjrcQQOaQOEJnuEV3hzpvDjvzseiteDkM8fwB87nDz1RjuY=</latexit>

Next
<latexit sha1_base64="/04fUx5CbtNJGNPyUDBDQPloL60=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxZNUsB/QhrLZTtulu5uwuxFL6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwpgzbTzv2ymsrK6tbxQ3S1vbO7t75f2Dpo4SRbFBIx6pdkg0ciaxYZjh2I4VEhFybIXjm8xvPaLSLJIPZhJjIMhQsgGjxGTSHT6ZXrniVb0Z3GXi56QCOeq98le3H9FEoDSUE607vhebICXKMMpxWuomGmNCx2SIHUslEaiDdHbr1D2xSt8dRMqWNO5M/T2REqH1RIS2UxAz0oteJv7ndRIzuApSJuPEoKTzRYOEuyZys8fdPlNIDZ9YQqhi9laXjogi1Nh4SjYEf/HlZdI8q/rnVe/+olK7zuMowhEcwyn4cAk1uIU6NIDCCJ7hFd4c4bw4787HvLXg5DOH8AfO5w8XCo5D</latexit> Ans

<latexit sha1_base64="EzJauHCFVmw9rVYLAt7MIeB3Ps8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uJa6V664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Njt1Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2RC8xZeXSfOs6p1X3fuLSu0mj6MIR3AMp+DBJdTgDurQAAYDeIZXeHOE8+K8Ox/z1oKTzxzCHzifPzNjjbw=</latexit>

T �
j

<latexit sha1_base64="8WPqCaIDG188Dswr9/97u5Grotk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9m1gh6LXjxW6Be0S8mm2TY2yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMviDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7jK/80SVZpFsmmlMfYFHkoWMYJNJzcHj+aBccavuHGiVeDmpQI7GoPzVH0YkEVQawrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYslVhQ7afzW2fozCpDFEbKljRorv6eSLHQeioC2ymwGetlLxP/83qJCW/8lMk4MVSSxaIw4chEKHscDZmixPCpJZgoZm9FZIwVJsbGU7IheMsvr5L2ZdWrVd2Hq0r9No+jCCdwChfgwTXU4R4a0AICY3iGV3hzhPPivDsfi9aCk88cwx84nz+NB43o</latexit>

T �
k

<latexit sha1_base64="6Ps7j3DCjP4TdyO7DF0/yE/WYZQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0lU0GPRi8cK/YI2lM120y7d3YTdjVBC/4IXD4p49Q9589+4SXPQ1gcDj/dmmJkXxJxp47rfTmltfWNzq7xd2dnd2z+oHh51dJQoQtsk4pHqBVhTziRtG2Y47cWKYhFw2g2m95nffaJKs0i2zCymvsBjyUJGsMmk1nB6PqzW3LqbA60SryA1KNAcVr8Go4gkgkpDONa677mx8VOsDCOcziuDRNMYkyke076lEguq/TS/dY7OrDJCYaRsSYNy9fdEioXWMxHYToHNRC97mfif109MeOunTMaJoZIsFoUJRyZC2eNoxBQlhs8swUQxeysiE6wwMTaeig3BW355lXQu695V3X28rjXuijjKcAKncAEe3EADHqAJbSAwgWd4hTdHOC/Ou/OxaC05xcwx/IHz+QOOjI3p</latexit>

T �
M

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

…

E�
M

<latexit sha1_base64="nta34gE+XG+4LV5XUqH2RD7n1o0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ6KokKeiyK4EWoYNpCG8pmu2mX7m7C7kYoob/BiwdFvPqDvPlv3LQ5aOuDgcd7M8zMCxPOtHHdb2dpeWV1bb20Ud7c2t7ZreztN3WcKkJ9EvNYtUOsKWeS+oYZTtuJoliEnLbC0U3ut56o0iyWj2ac0EDggWQRI9hYyb/t3Z+Ue5WqW3OnQIvEK0gVCjR6la9uPyapoNIQjrXueG5iggwrwwink3I31TTBZIQHtGOpxILqIJseO0HHVumjKFa2pEFT9fdEhoXWYxHaToHNUM97ufif10lNdBVkTCapoZLMFkUpRyZG+eeozxQlho8twUQxeysiQ6wwMTafPARv/uVF0jyreec19+GiWr8u4ijBIRzBKXhwCXW4gwb4QIDBM7zCmyOdF+fd+Zi1LjnFzAH8gfP5A383jdA=</latexit>

Tok�
M

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

…

| {z }
<latexit sha1_base64="i4jo7GwtGwKoN3YeH1gvlbskDwc=">AAACBHicbVC7TsMwFHXKq5RXgLFLRIXEVCWlEoyVWBiLRB9SE1WOc9NadZzIdpCqKAMLv8LCAEKsfAQbf4PTZoCWI1k+OudeX9/jJ4xKZdvfRmVjc2t7p7pb29s/ODwyj0/6Mk4FgR6JWSyGPpbAKIeeoorBMBGAI5/BwJ/dFP7gAYSkMb9X8wS8CE84DSnBSktjs+6mPADhC0wgc6cyKW6nZScqz8dmw27aC1jrxClJA5Xojs0vN4hJGgFXhGEpR45+x8uwUJQwyGtuKkEPmOEJjDTlOALpZYslcutcK4EVxkIfrqyF+rsjw5GU88jXlRFWU7nqFeJ/3ihV4bWXUZ6kCjhZDgpTZqnYKhKxAiqAKDbXBBNB9V8tMsU6EKVzq+kQnNWV10m/1XQum/Zdu9Fpl3FUUR2doQvkoCvUQbeoi3qIoEf0jF7Rm/FkvBjvxseytGKUPafoD4zPHyWfmFs=</latexit>

| {z }
<latexit sha1_base64="Q2q815ab42RF67VFAub46kmu5lk=">AAACBHicbVC7TsMwFHXKq5RXgLFLRIXEVCWlEoyVWBiLRB9SE1WOc9NadZzIdpCqKAMLv8LCAEKsfAQbf4PTZoCWI1k+OudeX9/jJ4xKZdvfRmVjc2t7p7pb29s/ODwyj0/6Mk4FgR6JWSyGPpbAKIeeoorBMBGAI5/BwJ/dFP7gAYSkMb9X8wS8CE84DSnBSktjs+6mPADhC0wgc6cyKe6WbScqz8dmw27aC1jrxClJA5Xojs0vN4hJGgFXhGEpR45+x8uwUJQwyGtuKkEPmOEJjDTlOALpZYslcutcK4EVxkIfrqyF+rsjw5GU88jXlRFWU7nqFeJ/3ihV4bWXUZ6kCjhZDgpTZqnYKhKxAiqAKDbXBBNB9V8tMsU6EKVzq+kQnNWV10m/1XQum/Zdu9Fpl3FUUR2doQvkoCvUQbeoi3qIoEf0jF7Rm/FkvBjvxseytGKUPafoD4zPHyQXmFo=</latexit>

z }| {
<latexit sha1_base64="WkmkOQqV4y/G2CwEGjey+GFekFc=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGi7osuHFZwT6gM5RMeqcNzWSGJCOUobjxV9y4UMStX+HOvzHTzkJbD4Qczrn3JvcECWdKO863VVpZXVvfKG9WtrZ3dvfs/YO2ilNJoUVjHstuQBRwJqClmebQTSSQKODQCcY3ud95AKlYLO71JAE/IkPBQkaJNlLfPvJiYweSUMi8kUry+9JJ9HTat6tOzZkBLxO3IFVUoNm3v7xBTNMIhKacKNVzzRw/I1IzymFa8VIFZv6YDKFnqCARKD+brTDFp0YZ4DCW5giNZ+rvjoxESk2iwFRGRI/UopeL/3m9VIfXfsZEkmoQdP5QmHKsY5zngQdMAtV8Ygihkpm/YjoiJg9tUquYENzFlZdJ+7zmXtScu3q1US/iKKNjdILOkIuuUAPdoiZqIYoe0TN6RW/Wk/VivVsf89KSVfQcoj+wPn8A712XuA==</latexit>

… …

|Name of entity “Next”| |Possible answer “Ans”|
z }| {

<latexit sha1_base64="WkmkOQqV4y/G2CwEGjey+GFekFc=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGi7osuHFZwT6gM5RMeqcNzWSGJCOUobjxV9y4UMStX+HOvzHTzkJbD4Qczrn3JvcECWdKO863VVpZXVvfKG9WtrZ3dvfs/YO2ilNJoUVjHstuQBRwJqClmebQTSSQKODQCcY3ud95AKlYLO71JAE/IkPBQkaJNlLfPvJiYweSUMi8kUry+9JJ9HTat6tOzZkBLxO3IFVUoNm3v7xBTNMIhKacKNVzzRw/I1IzymFa8VIFZv6YDKFnqCARKD+brTDFp0YZ4DCW5giNZ+rvjoxESk2iwFRGRI/UopeL/3m9VIfXfsZEkmoQdP5QmHKsY5zngQdMAtV8Ygihkpm/YjoiJg9tUquYENzFlZdJ+7zmXtScu3q1US/iKKNjdILOkIuuUAPdoiZqIYoe0TN6RW/Wk/VivVsf89KSVfQcoj+wPn8A712XuA==</latexit>

Ans span

sem[x,Q, clues]

Prev1
<latexit sha1_base64="puK58MFBvgD1nt+jWdz8pL4eOOM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt2kw27m0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1DJVDBtMCqnaAdUoeIwNw43AdqKQRoHAVjC6m/mtMSrNZfxoJgn6ER3EPOSMGis16wrHPa9XrrhVdw6ySrycVCBHvVf+6vYlSyOMDRNU647nJsbPqDKcCZyWuqnGhLIRHWDH0phGqP1sfu2UnFmlT0KpbMWGzNXfExmNtJ5Ege2MqBnqZW8m/ud1UhPe+BmPk9RgzBaLwlQQI8nsddLnCpkRE0soU9zeStiQKsqMDahkQ/CWX14lzYuqd1l1H64qtds8jiKcwCmcgwfXUIN7qEMDGDzBM7zCmyOdF+fd+Vi0Fpx85hj+wPn8ATvNjuU=</latexit>

+
<latexit sha1_base64="26BDQsRl0AvWjqpXxBRvcak+khY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSIIQklU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+Oyura+sbm4Wt4vbO7t5+6eCwqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3dRvPaHSPJYPZpygH9GB5CFn1Fipft4rld2KOwNZJl5OypCj1it9dfsxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bHTohp1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IQ3fsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRtCN7iy8ukeVHxLitu/apcvc3jKMAxnMAZeHANVbiHGjSAAcIzvMKb8+i8OO/Ox7x1xclnjuAPnM8fci+MsQ==</latexit>

X[Prev2]
<latexit sha1_base64="34xctzRhXynC5MRSN2gEdH2p5uw=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgqiRV0GXRjcsK9gFpCJPppB06mYSZSbGE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkDAqlW1/G5WNza3tnepubW//4PDIPK73ZJwKTLo4ZrEYBEgSRjnpKqoYGSSCoChgpB9M7wq/PyNC0pg/qnlCvAiNOQ0pRkpLvlkfRkhNgjAb5G5HkJnf8nyzYTftBax14pSkASU6vvk1HMU4jQhXmCEpXcdOlJchoShmJK8NU0kShKdoTFxNOYqI9LJF9tw618rICmOhH1fWQv29kaFIynkU6MkiqVz1CvE/z01VeONllCepIhwvD4Ups1RsFUVYIyoIVmyuCcKC6qwWniCBsNJ11XQJzuqX10mv1XQum/bDVaN9W9ZRhVM4gwtw4BracA8d6AKGJ3iGV3gzcuPFeDc+lqMVo9w5gT8wPn8A/ZyUZQ==</latexit>

X[Prev1]
<latexit sha1_base64="TXQJqDIeE3FAztKM5jG5ip1FY+c=">AAAB+3icbVBNS8NAFHypX7V+xXr0slgETyVRQY9FLx4r2FpoQ9hsN+3SzSbsbool5K948aCIV/+IN/+NmzYHbR1YGGbe481OkHCmtON8W5W19Y3Nrep2bWd3b//APqx3VZxKQjsk5rHsBVhRzgTtaKY57SWS4ijg9DGY3Bb+45RKxWLxoGcJ9SI8EixkBGsj+XZ9EGE9DsKsl/fbkk591/PthtN05kCrxC1JA0q0fftrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bKnBElZfNs+fo1ChDFMbSPKHRXP29keFIqVkUmMkiqVr2CvE/r5/q8NrLmEhSTQVZHApTjnSMiiLQkElKNJ8ZgolkJisiYywx0aauminBXf7yKumeN92LpnN/2WjdlHVU4RhO4AxcuIIW3EEbOkDgCZ7hFd6s3Hqx3q2PxWjFKneO4A+szx/8F5Rk</latexit>

y
<latexit sha1_base64="cs1Q9fet/6GNtc+Tzw/y6WCTX8Y=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0Io/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHkyXoR3QoecgZNVZqZP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03Mf6EKsOZwGmpl2pMKBvTIXYtlTRC7U/mh07JmVUGJIyVLWnIXP09MaGR1lkU2M6ImpFe9mbif143NeGNP+EySQ1KtlgUpoKYmMy+JgOukBmRWUKZ4vZWwkZUUWZsNiUbgrf88ippXVS9y6rbuKrUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kD6GeM/w==</latexit>

Results of The 
Step of 

Visiting xX[x]
<latexit sha1_base64="TklOcwpA1D9+YieOLHI872SLYNc=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkVdFl047KCfcB0KJk004ZmkjHJFMvQ73DjQhG3fow7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg5bWqaK0CaRXKpOiDXlTNCmYYbTTqIojkNO2+HoNvfbY6o0k+LBTBIaxHggWMQINlYKujE2wzDKOlP/KehVqm7NnQEtE68gVSjQ6FW+un1J0pgKQzjW2vfcxAQZVoYRTqflbqppgskID6hvqcAx1UE2Cz1Fp1bpo0gq+4RBM/X3RoZjrSdxaCfzkHrRy8X/PD810XWQMZGkhgoyPxSlHBmJ8gZQnylKDJ9YgoliNisiQ6wwMbansi3BW/zyMmmd17yLmnt/Wa3fFHWU4BhO4Aw8uII63EEDmkDgEZ7hFd6csfPivDsf89EVp9g5gj9wPn8AFqCSTA==</latexit>

(
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Figure 2: Overview of CogQA implementation. When visiting the node x, System 1 generates new hop and answer
nodes based on the clues[x, G] discovered by System 2. It also creates the inital representation sem[x, Q, clues],
based on which the GNN in System 2 updates the hidden representations X[x].

paragraphs is to access some specific paragraphs
by their title indexes. For multi-hop questions,
traditional retrieval-extraction frameworks might
sacrifice the potential of follow-up models, be-
cause paragraphs multiple hops away from the
question could share few common words and little
semantic relation with the question, leading to a
failed retrieval. However, these paragraphs can be
discovered by iteratively expanding with clues in
our framework.

Algorithm 1 describes the procedure of our
framework CogQA. After initialization, an iter-
ative process for graph expansion and reasoning
begins. In each step we visit a frontier node x,
and System 1 reads para[x] under the guidance of
clues and the question Q, extracts spans and gen-
erates semantic vector sem[x, Q, clues]. Mean-
while, System 2 updates hidden representation X

and prepares clues[y, G] for any successor node y.
The final prediction is made based on X.

3 Implementation

The main part to implement the CogQA frame-
work is to determine the concrete models of Sys-
tem 1 and 2, and the form of clues.

Our implementation uses BERT as System 1
and GNN as System 2. Meanwhile, clues[x, G]
are sentences in paragraphs of x’s predecessor

nodes, from which x is extracted. We directly pass
raw sentences as clues, rather than any form of
computed hidden states, for easy training of Sys-
tem 1. Because raw sentences are self-contained
and independent of computations from previous
iterative steps, training at different iterative steps
is then decoupled, leading to efficiency gains dur-
ing training. Details are introduced in § 3.4. Hid-
den representations X for graph nodes are updated
each time by a propagation step of GNN.

Our overall model is illustrated in Figure 2.

3.1 System 1
The extraction capacity of System 1 model is fun-
damental to construct the cognitive graph, thus a
powerful model is needed. Recently, BERT (De-
vlin et al., 2018) has become one of the most suc-
cessful language representation models on various
NLP tasks, including SQuAD (Rajpurkar et al.,
2016). BERT consists of multiple layers of Trans-
former (Vaswani et al., 2017), a self-attention
based architecture, and is elaborately pre-trained
on large corpora. Input sentences are composed of
two different functional parts A and B.

We use BERT as System 1, and its input when
visiting the node x is as follows:

[CLS] Question [SEP ] clues[x, G] [SEP ]
� �� �

Sentence A

Para[x]
� �� �

Sentence B
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Fig. 21.6: Overview of CogQA implementation. When visiting the node x, System 1
generates new hop and answer nodes based on the clues[x,G ] discovered by System
2. It also creates the inital representation sem[x,Q,clues], based on which the GNN
in System 2 updates the hidden representations Xx. Figure credit: Ding et al (2019a).

D = s((AD�1)>s(XW1)) (21.1)
X 0 = s(XW2 +D) (21.2)

where X 0 is the new hidden representations after a propagation step of GNN.
W1,W2 2 Rh⇥h are weight matrices, s is the activation function. D 2 Rn⇥h are ag-
gregated vectors passed from neighbors in the propagation. A is the adjacent matrix
of G . It is column-normalized to AD�1, where D is the degree matrix of G . By left
multiplying the transformed hidden vector s(XW1) with (AD�1)>, the GNN per-
forms a localized spectral filtering. In the iterative step of visiting frontier node x,
its hidden representation Xx is updated following the above equations.

Finally, a two-layer fully connected network (FCN) is utilized to serve as predic-
tor F :

answer = argmax
answer node x

F (Xx) (21.3)

In this way, one answer candidate can be selected as the final answer. In the Hot-
potQA dataset (Yang et al, 2018b), there are also questions that aim to compare a
certain property of entity x and y. Such questions are regarded as binary classifica-
tion with input Xx �Xy and solved by another identical FCNs.
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The cognitive graph structure in the CogQA framework offers ordered and entity-
level explainability and suits for relational reasoning, owing to the explicit reasoning
paths in it. Aside from simple paths, it can also clearly display joint or loopy reason-
ing processes, where new predecessors might bring new clues about the answer. As
we can see, by modeling the context information as a cognitive graph and applying
GNN to such representation, we can mimic the dual process of human perception
and reasoning and achieve excellent performance on multi-hop machine reading
comprehension tasks, as demonstrated in (Ding et al, 2019a).

21.5 Future Directions

Applying graph neural networks to NLP tasks with suitable graph representations
for text can bring significant benefits, as we have discussed and shown through
the case studies. Although GNNs have achieved outstanding performance in many
tasks, including text clustering, classification, generation, machine reading compre-
hension and so on, there are still numerous open problems to solve at the moment
to better understand human language with graph-based representations and models.
In particular, here we categorize and discuss the open problems or future directions
for graph-based NLP in terms of five aspects: model design of GNNs, data rep-
resentation learning, multi-task relationship modeling, world model, and learning
paradigm.

Although several GNN models are applicable to NLP tasks, only a small subset of
them is explored for model design. More advanced GNN models can be utilized or
improved to handle the scale, depth, dynamics, heterogeneity, and explainability of
natural language texts. First, scaling GNNs to large graphs helps to utilize resources
such as large-scale knowledge graphs better. Second, most GNN architectures are
shallow, and the performance drops after two to three layers. Design deeper GNNs
enables node representation learning with information from larger and more adap-
tive receptive fields (Liu et al, 2020c). Third, we can utilize dynamic graphs to model
the evolving or temporal phenomenons in texts, e.g., the development of stories or
events. Correspondingly, dynamic or temporal GNNs (Skarding et al, 2020) can help
capture the dynamic nature in specific NLP tasks. Forth, the syntactic, semantic, as
well as knowledge graphs in NLP are essentially heterogeneous graphs. Developing
heterogeneous GNNs (Wang et al, 2019i; Zhang et al, 2019b) can help better utiliz-
ing the various nodes and edge information in text and understanding its semantic.
Last but not least, the need for improved explainability, interpretability, and trust of
AI systems in general demands principled methodologies. One way is using GNNs
as a model of neural-symbolic computing and reasoning (Lamb et al, 2020), as the
data structure and reasoning process can be naturally captured by graphs.

For data representations, most existing GNNs can only learn from input when
a graph-structure of input data is available. However, real-world graphs are often
noisy and incomplete or might not be available at all. Designing effective models
and algorithms to automatically learn the relational structure in input data with lim-
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ited structured inductive biases can efficiently solve this problem. Instead of man-
ually designing specific graph representations of data for different applications, we
can enable models to automatically identify the implicit, high-order, or even casual
relationships between input data points, and learn the graph structure and repre-
sentations of inputs. To achieve these, recent research on graph pooling (Lee et al,
2019b), graph transformers (Yun et al, 2019), and hypergraph neural networks (Feng
et al, 2019c) can be applied and further explored.

Multi-task learning (MTL) in deep neural networks for NLP has recently re-
ceived increasing interest as it has the potential to efficiently regularize models and
to reduce the need for labeled data (Bingel and Søgaard, 2017). We can marriage the
representation power of graph structures with multi-task learning to integrate diverse
input data, such as images, text pieces, and knowledge bases, and jointly learn a uni-
fied and structured representation for various tasks. Furthermore, we can learn the
relationships or correlations between different tasks and exploit the learned relation-
ship for curriculum learning to accelerate the convergence rate for model training.
Finally, with the unified graph representation and integration of different data, as
well as the joint and curriculum learning of different tasks, NLP or AI systems will
gain the ability to continually acquire, fine-tune, and transfer knowledge and skills
throughout their lifespan.

Grounded language learning or acquisition (Matuszek, 2018; Hermann et al,
2017) is another trending research topic that aims at learning the meaning of lan-
guage as it applies to the physical world. Intuitively, language can be better learned
when presented and interpreted in the context of the world it pertains to. It has
been demonstrated that GNNs can efficiently capture joint dependencies between
different elements in the world (Li et al, 2017e). Besides, they can also efficiently
utilize the rich information in multiple modalities of the world to help understand
the meaning of scene texts (Gao et al, 2020a). Therefore, representing the world
or environment with graphs and GNNs to improve the understanding of languages
deserves more research endeavors.

Lastly, research about self-supervised pre-training for GNNs is also attracting
more attention. Self-supervised representation learning leverages input data itself
as supervision and benefits almost all types of downstream tasks (Liu et al, 2020f).
Numerous successful self-supervised pre-training strategies, such as BERT (Devlin
et al, 2019) and GPT (Radford et al, 2018) have been developed to tackle a variety
of language tasks. For graph learning, when task-specific labeled data is extremely
scarce, or the graphs in the training set are structurally very different from graphs
in the test set, pre-training GNNs can serve as an efficient approach for transfer
learning on graph-structured data (Hu et al, 2020c).

21.6 Conclusions

Over the past few years, graph neural networks have become powerful and practical
tools for a variety of problems that can be modeled by graphs. In this chapter, we
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did a comprehensive overview of combining graph representations and graph neural
networks in NLP tasks. We introduced the motivation of applying graph representa-
tions and GNNs to NLP problems through the developing history of NLP research.
After that, we provided a brief overview of various graph representations in NLP,
as well as discussed how to tackle different NLP tasks from a graph perspective. To
illustrate how graphs and GNNs are applied in NLP applications with more details,
we presented two case studies related to graph-based hot event discovery and multi-
hop machine reading comprehension. Finally, we categorized and discussed several
frontier research and open problems for graph-based NLP.

Editor’s Notes: Graph-based methods for Natural Language Processing
have been long studied over the last two decades. Indeed, the human lan-
guage is high-level symbol and thus there are rich hidden structural infor-
mation beyond the original simple text sequence. In order to make full use
of GNNs for NLP, graph structure learning techniques in Chapter 14 and
GNN Methods in Chapter 4 serve as the two fundamental building blocks.
Meanwhile, GNN Scalability in Chapter 6, Heterogeneous GNNs in Chap-
ter 16, GNN Robustness in Chapter 8, and so on are also highly important
for developing an effective and efficient approach with GNNs for various
NLP applications. This chapter is also highly correlated with the Chapter
20 (GNN for CV) since vision and language is a fast-growing research area
and multi-modality data is widely used today.




