
Chapter 20
Graph Neural Networks in Computer Vision

Siliang Tang, Wenqiao Zhang, Zongshen Mu, Kai Shen, Juncheng Li, Jiacheng Li
and Lingfei Wu

Abstract Recently Graph Neural Networks (GNNs) have been incorporated into
many Computer Vision (CV) models. They not only bring performance improve-
ment to many CV-related tasks but also provide more explainable decomposition to
these CV models. This chapter provides a comprehensive overview of how GNNs
are applied to various CV tasks, ranging from single image classification to cross-
media understanding. It also provides a discussion of this rapidly growing field from
a frontier perspective.
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20.1 Introduction

Recent years have seen great success of Convolutional Neural Network (CNN) in
Computer Vision (CV). However, most of these methods lack the fine-grained anal-
ysis of relationships among the visual data (e.g., relation visual regions, adjacent
video frames). For example, an image can be represented as a spatial map while the
regions in an image are often spatially and semantically dependent. Similarly, video
can be represented as spatio-temporal graphs, where each node in the graph repre-
sents a region of interest in the video and the edges capture relationships between
such regions. These edges can describe the relations and capture the interdepen-
dence between nodes in the visual data. Such fine-grained dependencies are critical
to perceiving, understanding, and reasoning the visual data. Therefore, graph neural
networks can be naturally utilized to extract patterns from these graphs to facilitate
the corresponding computer vision tasks.

This chapter introduces the graph neural network model in various computer
vision tasks, including specific tasks for image, video and cross-media (cross-
modal) (Zhuang et al, 2017). For each task, this chapter demonstrates how graph
neural networks can be adapted to and improve the aforementioned computer vision
tasks with representative algorithms.

Ultimately, to provide a frontier perspective, we also introduce some other dis-
tinctive GNN modeling methods and application scenarios on the subfield.

20.2 Representing Vision as Graphs

In this section, we introduce the representation of visual graph G V = {V ,E }. We
focus on how to construct nodes V = {v1,v2, ...,vN} and edges (or relations) E =
{e1,e2, ...,eM} in the visual graph.

20.2.1 Visual Node representation

Nodes are essential entities in a graph. There are three kinds of methods to represent
the node of the image X 2 Rh⇥w⇥c or the video X 2 Rf ⇥h⇥w⇥c, where (h,w) is the
resolution of the original image, c is the number of channels, and f is the number of
frames.

Firstly, it is possible to split the image or the frame of the video into regular
grids referring to Fig. 20.1, each of which is the (p,p) resolution of the image patch
(Dosovitskiy et al, 2021; Han et al, 2020). Then each grid servers as the vertex of
the visual graph and apply neural networks to get its embedding.

Secondly, some pre-processed structures like Fig. 20.2 can be directly borrowed
for vertex representation. For example, by object detection framework like Faster
R-CNN (Ren et al, 2015) or YOLO (Heimer et al, 2019), visual regions in the first
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Fig. 20.1: Split an image into fixed-size patches and view as vertexes

column of the figure, have been processed and can be thought of as vertexes in the
graph. We map different regions to the same dimensional features and feed them to
the next training step. Like the middle column of the figure, scene graph generation
models (Xu et al, 2017a; Li et al, 2019i) not only achieve visual detection but also
aim to parse an image into a semantic graph which consists of objects and their
semantic relationships, where it is tractable to get vertexes and edges to deploy
downstream tasks in the image or video. In the last one, human joints linked by
skeletons naturally form a graph and learn human action patterns (Jain et al, 2016b;
Yan et al, 2018a)

Fig. 20.2: Pre-processed visual graph examples

At last, some works utilize semantic information to represent visual vertexes. Li
and Gupta (2018) assigns pixels with similar features to the same vertex, which is
soft and likely groups pixels into coherent regions. Pixel features in the group are
further aggregated to form a single vertex feature as Fig. 20.3. Using convolutions
to learn densely-distributed, low-level patterns, Wu et al (2020a) processes the input
image with several convolution blocks and treat these features from various filters as
vertexes to learn more sparsely-distributed, higher-order semantic concepts. A point
cloud is a set of 3D points recorded by LiDAR scans. Te et al (2018) and Landrieu
and Simonovsky (2018) aggregate k-nearest neighbor to form superpoint (or vertex)
and build their relations by ConvGNNs to explore the topological structure and ‘see’
the surrounding environment.
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Fig. 20.3: Grouping similar pixels as vertexes (different colors)

20.2.2 Visual Edge representation

Edges depict the relations of nodes and play an important role in graph neural net-
works.For a 2D image, the nodes in the image can be linked with different spatial
relations. For a clip of video stacked by continuous frames, it adds temporal rela-
tions between frames besides spatial ones within the frame. On the one hand, these
relations can be fixed by predefined rules to train GNNs, referred to as static rela-
tions. Learning to learn relations (thought of as dynamic relations) attracts more and
more attention on the other hand.

20.2.2.1 Spatial Edges

To capture spatial relations is the key step in the image or video. For static methods,
generating scene graphs (Xu et al, 2017a) and human skeletons (Jain et al, 2016b)
are natural to choose edges between nodes in the visual graph described in the Fig.
20.2. Recently, some works (Bajaj et al, 2019; Liu et al, 2020g) use fully-connected
graph (every vertex is linked with other ones) to model the relations among vi-
sual nodes and compute union region of them to represent edge features. Further-
more, self-attention mechanism (Yun et al, 2019; Yang et al, 2019f) are introduced
to learn the relations among visual nodes, whose main idea is inspired by trans-
former (Vaswani et al, 2017) in NLP. When edges are represented, we can choose
either spectral-based or spatial-based GNNs for applications (Zhou et al, 2018c; Wu
et al, 2021d).

Fig. 20.4: A spatial-temporal graph by extracting nodes from each frame and allow-
ing directed edges between nodes in neighbouring frames
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20.2.2.2 Temporal Edges

To understand the video, the model not only builds spatial relations in a frame but
also captures temporal connections among frames. A series of methods (Yuan et al,
2017; Shen et al, 2020; Zhang et al, 2020h) compute each node in the current frame
with near frames by semantic similarity methods like k-Nearest Neighbors to con-
struct temporal relations among frames. Especially, as you can see in the Fig. 20.4,
Jabri et al (2020) represent video as a graph using a Markov chain and learn a ran-
dom walk among nodes by dynamic adjustment, where nodes are image patches, and
edges are affinities (in some feature space) between nodes of neighboring frames.
Zhang et al (2020g) use regions as visual vertexes and evaluate the IoU (Intersection
of Union) of nodes among frames to represent the weight edges.

20.3 Case Study 1: Image

20.3.1 Object Detection

Object detection is a fundamental and challenging problem in computer vision,
which received great and lasting attention in recent years. Given a natural image,
the object detection task seeks to locate the visual object instances from certain cat-
egories (e.g. humans, animals, or trees). Generally speaking, object detection can
be grouped into two categories (Liu et al, 2020b): 1) generic object detection and 2)
salient object detection. The first class aims to detect unlimited instances of objects
in the digital image and predict their class attributes from some pre-defined cate-
gories. The goal of the second type is to detect the most salient instance. In recent
years deep learning-based methods have achieved tremendous success in this field,
such as Faster-RCNN (Ren et al, 2015), YOLO (Heimer et al, 2019), and etc. Most
of the early methods and their follow-ups (Ren et al, 2015; He et al, 2017a) usu-
ally adopt the region selection module to extract the region features and predict the
active probability for each candidate region. Although they are demonstrated suc-
cessful, they mostly treat the recognition of each candidate region separately, thus
leading to nonnegligible performance drops when facing the nontypical and non-
ideal occasions, such as heavy long-tail data distributions and plenty of confusing
categories (Xu et al, 2019b). The graph neural network (GNN) is introduced to ef-
fectively address this troublesome challenge by modeling the correlations between
regions explicitly and leveraging them to achieve better performance. In this section,
we will present one typical case SGRN (Xu et al, 2019b) to discuss this promising
direction.

The SGRN can be simply divided into two modules: 1) sparse graph learner
which learns the graph structure explicitly during the training and 2) the spatial-
aware graph embedding module which leverages the learned graph structure infor-
mation and obtains the graph representation. To make it clear, we denote the graph
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as G (V ,E ), where V is the vertex set and E is the edge set. The image is I . And
we formulate the regions as R = {fi}nI

i=1, fi 2 Rd for a specific image I , where d
is the region feature’s dimension. We will discuss these two parts and omit other
details.

Unlike previous attempts in close fields which build category-to-category graph
(Dai et al, 2017; Niepert et al, 2016), the SGRN treats the candidate regions R as
graph nodes V and constructs dynamic graph G on top of them. Technically, they
project the region features into the latent space z by:

zi = f(fi) (20.1)

where f is the two fully-connected layers with ReLU activation, zi 2 Rl and l is the
latent dimension.

The region graph is constructed by latent representation z as follows:

Si, j = ziz>
j (20.2)

where S 2 Rnr⇥nr . It is not proper to reserve all relations between region pairs since
there are many negative (i.e., background) samples among the region proposals,
which may affect the down task’s performance. If we use the dense matrix S as the
graph adjacency matrix, the graph will be fully-connected, which leads to computa-
tion burden or performance drop since most existing GNN methods work worse on
fully-connected graphs (Sun et al, 2019). To solve this issue, the SGRN adopt KNN
to make the graph sparse (Chen et al, 2020n,o). In other words, for the learned sim-
ilarity matrix Si 2 RNr , they only keep the K nearest neighbors (including itself) as
well as the associated similarity scores (i.e., they mask off the remaining similarity
scores). The learned graph adjacency is denoted as:

A = KNN(S) (20.3)

The node’s initial embedding is obtained by the pre-trained visual classifier. We
omit the details and simply denote it as X = {xi}nr

i=1. The SGRN introduces a spatial-
aware graph reasoning module to learn the spatial-aware node embedding. Formally,
they introduce a patch of operator adapted by graph convolutional network (GCN)
with learnable gaussian kernels, given by:

f 0
k(i) = Â

j2N (i)
wk(µ(i, j))x jAi, j (20.4)

where N (i) denotes the neighborhood of node i, µ(i, j) is the distance of node i, j
calculated by the center of them in a polar coordinate system, and wk() is the k�th
gaussian kernel. Then the K kernels’ results are concatenated together and projected
to the latent space as follows:

hi = g([ f 0
1(i); f 0

2(i); ...; f 0
K(i)]) (20.5)
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where g(·) denotes the projection with non-linearity. Finally, hi is combined with
the original visual region feature fi to enhance classification and regression perfor-
mance.

20.3.2 Image Classification

Inspired by the success of deep learning techniques, significant improvement has
been made in the image classification field, such as ResNet (He et al, 2016a). How-
ever, the CNN-based models are limited in modeling relations between samples. The
graph neural network is introduced to image classification, which aims to model the
fine-grained region correlations to enhance classification performance (Hong et al,
2020a), combining labeled and unlabeled image instances for semi-supervised im-
age classification (Luo et al, 2016; Satorras and Estrach, 2018). In this section, we
will present a typical case for semi-supervised image classification to show the ef-
fectiveness of GNN.

We denote the data samples as (xi,yi) 2 T , where xi is the image and yi 2 RK

is the image label. For semi-supervised setting, the T is divided into labeled part
Tlabeled and unlabeled part Tunlabeld . We assume that there are Nl labeled samples
and Nu unlabeled samples, respectively. The proposed GNN is dynamic and multi-
layer, which means for each layer, it will learn the graph topology from the previous
layer’s the node embedding and learn the new embedding on top of it. Thus, we
denote the layer number as M and only present the detailed graph construction and
graph embedding techniques of layer k. Technically, they construct the graph for
the image set and formulate the posterior prediction task as message passing with
graph neural network. They cast the samples as graph G (V ,E ), whose nodes set
is the image set consisting of both labeled and unlabeled data. The edge set E is
constructed during training.

First, they denote the initial node representation as X = {xi}nl+nu
i=1 as follows:

xi
0 = (f(xi),h(yi)) (20.6)

where f() is the convolutional neural network and h() is the one-hot label encoding.
Note that for unlabeled data, they replace the h() with the uniform distribution over
the K-simplex.

Second, the graph topology is learned by current layer’s node embedding denoted
as xk. The distance matrix modeling the distance in the embedding space between
nodes is denoted as S given by:

Sk
i, j = j(xi,x j) (20.7)

where j is a parametrized symmetric function as follows:

j(a,b) = MLP(abs(a�b)) (20.8)
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where MLP() is a multilayer perceptron network and abs() is the absolute function.
Then the adjacency matrix A is calculated by normalizing the row of S using softmax
operation.

Then a GNN layer is adapted to encode the graph nodes with learned topology A.
The GNN layer receives the node embedding matrix xk and outputs the aggregated
node representation xk+1 as:

xk+1
l = r( Â

B2A
Bxkq k

B,l), l = d1...dk+1 (20.9)

where {q k
1 , ....,q k

|A|} are trainable parameters, and r() is non-linear activate function
(leaky ReLU here).

The graph neural network is effective in modeling the unstructured data’s cor-
relation. In this work, the GNN explicitly exploits the relation between samples,
especially the labeled and unlabeled data, contributing to few-shot image classifica-
tion challenges.

20.4 Case Study 2: Video

20.4.1 Video Action Recognition

Action recognition in video is a highly active area of research, which plays a crucial
role in video understanding. Given a video as input, the task of action recognition
is to recognize the action appearing in the video and predict the action category.
Over the past few years, modeling the spatio-temporal nature of video has been the
core of research in the field of video understanding and action recognition. Early
approaches of activity recognition such as Hand-crafted Improved Dense Trajec-
tory(iDT) (Wang and Schmid, 2013), two-Stream ConvNets (Simonyan and Zisser-
man, 2014a), C3D (Tran et al, 2015), and I3D (Carreira and Zisserman, 2017) have
focused on using spatio-temporal appearance features. To better model longer-term
temporal information, researchers also attempted to model the video as an ordered
frame sequence using Recurrent Neural Networks (RNNs) (Yue-Hei Ng et al, 2015;
Donahue et al, 2015; Li et al, 2017b). However, these conventional deep learning
approaches only focus on extracting features from the whole scenes and are unable
to model the relationships between different object instances in space and time. For
example, to recognize the action in the video corresponds to “opening a book”, the
temporal dynamics of objects and human-object and object-object interactions are
crucial. We need to temporally link book regions across time to capture the shape of
the book and how it changes over time.

To capture relations between objects across time, several deep models (Chen
et al, 2019d; Herzig et al, 2019; Wang and Gupta, 2018; Wang et al, 2018e) have
been recently introduced that represent the video as spatial-temporal graph and
leverage recently proposed graph neural networks. These methods take dense ob-
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ject proposals as graph nodes and learn the relations between them. In this section,
we take the framework proposed in (Wang and Gupta, 2018) as one example to
demonstrate how graph neural networks can be applied to action recognition task.

As illustrated in Fig 20.5, the model takes a long clip of video frames as in-
put and forwards them to a 3D Convolutional Neural Network to get a feature map
I 2 Rt⇥h⇥w⇥d , where t represents the temporal dimension, h⇥w represents the spa-
tial dimensions and d represents the channel number. Then the model adopts the
Region Proposal Network (RPN) (Ren et al, 2015) to extract the object bounding
boxes followed by RoIAlign (He et al, 2017a) extracting d-dimension feature for
each object proposal. The output n object proposals aggregated over t frames are
corresponding to n nodes in the building graphs. There are mainly two types of
graphs: Similarity Graph and Spatial-Temporal Graph.

X RoIAlign Graph
Convolutions

Building Graphs

Pooling Over n nodes

Pooling Over t×h×w nodes

1×d

1×d
Classification

t×h×w×d Feature

n×d

Fig. 20.5: Overview of the GNN-based model for Video Action Recognition.

The similarity graph is constructed to measure the similarity between objects. In
this graph, pairs of semantically related objects are connected. Formally, the pair-
wise similarity between every two nodes can be represented as:

F(xi,x j) = f(xi)
>f 0

(x j) (20.10)

where f and f 0 represent two different transformations of the original features.
After computing the similarity matrix, the normalized edge values Asim

i j from
node i to node j can be defined as:

Asim
i j =

expF(xi,x j)

Ân
j=1 expF(xi,x j)

(20.11)
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The spatial-temporal graph is proposed to encode the relative spatial and tempo-
ral relations between objects, where objects in nearby locations in space and time
are connected together. The normalized edge values of the spatial-temporal graph
can be formulated as:

A f ront
i j =

si j

Ân
j=1 si j

(20.12)

where G f ront represents the forward graph which connects objects from frame t to
frame t + 1, and si j represents the value of Intersection Over Unions (IoUs) between
object i in frame t and object j in frame t + 1. The backward graph Aback can be
computed in a similar way. Then, the Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2017b) is applied to update features of each object node. One layer of
graph convolutions can be represented as:

Z = AXW (20.13)

where A represents one of the adjacency matrix (Asim, A f ront , or Aback), X represents
the node features, and W is the weight matrix of the GCN.

The updated node features after graph convolutions are forwarded to an average
pooling layer to obtain the global graph representation. Then, the graph representa-
tion and pooled video representation are concatenated together for video classifica-
tion.

20.4.2 Temporal Action Localization

Temporal action localization is the task of training a model to predict the bound-
aries and categories of action instances in untrimmed videos. Most existing meth-
ods (Chao et al, 2018; Gao et al, 2017; Lin et al, 2017; Shou et al, 2017, 2016; Zeng
et al, 2019) tackle temporal action localization in a two-stage pipeline: they first gen-
erate a set of 1D temporal proposals and then perform classification and temporal
boundary regression on each proposal individually. However, these methods process
each proposal separately, failing to leverage the semantic relations between propos-
als. To model the proposal-proposal relations in the video, graph neural networks are
then adopted to facilitate the recognition of each proposal instance. P-GCN (Zeng
et al, 2019) is recently proposed method to exploit the proposal-proposal relations
using Graph Convolutional Networks. P-GCN first constructs an action proposal
graph, where each proposal is represented as a node and their relations between two
proposals as an edge. Then P-GCN performs reasoning over the proposal graph us-
ing GCN to model the relations among different proposals and update their represen-
tations. Finally, the updated node representations are used to refine their boundaries
and classification scores based on the established proposal-proposal dependencies.
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20.5 Other Related Work: Cross-media

Graph-structured data widely exists in different modal data (images, videos, texts),
and is used in existing cross-media tasks (e.g., visual caption, visual question an-
swer, cross-media retrieval). In other words, using of graph structure data and GNN
rationally can effectively improve the performance of cross-media tasks.

20.5.1 Visual Caption

Visual caption aims at building a system that automatically generates a natural lan-
guage description of a given image or video. The problem of image captioning is
interesting not only because it has important practical applications, such as helping
visually impaired people see, but also because it is regarded as a grand challenge
for vision understanding. The typical solutions of visual captioning are inspired
by machine translation and equivalent to translating an image to a text. In these
methods (Li et al, 2017d; Lu et al, 2017a; Ding et al, 2019b), Convolutional Neu-
ral Network (CNN) or Region-based CNN (R-CNN) is usually exploited to encode
an image and a decoder of Recurrent Neural Network (RNN) w/ or w/o attention
mechanism is utilized to generate the sentence. However, a common issue not fully
studied is how visual relationships should be leveraged in view that the mutual corre-
lations or interactions between objects are the natural basis for describing an image.

Faster R-CNN

on
wearing

Attention
Mechanism

Mean Pooling

ො𝑣𝑡

ℎ𝑡−12

LSTM

LSTM

𝑤𝑡−1

𝑤𝑡

ҧ𝑣
ℎ𝑡1

Semantic Graph

Spatial Graph

GCN

GCN

Fig. 20.6: Framework of GCN-LSTM.

In recent years, Yao et al (2018) presented Graph Convolutional Networks plus
Long Short-Term Memory (GCN-LSTM) architecture, which explores visual rela-
tionship for boosting image captioning. As shown in Fig. 20.6, they study the prob-
lem from the viewpoint of modeling mutual interactions between objects/regions to
enrich region-level representations that are feed into sentence decoder. Specifically,



458 Authors Suppressed Due to Excessive Length

they build two kinds of visual relationships, i.e., semantic and spatial correlations,
on the detected regions, and devised Graph Convolutions on the region-level rep-
resentations with visual relationships to learn more powerful representations. Such
relation-aware region-level representations are then input into attention LSTM for
sentence generation.

Then, Yang et al (2019g) presented a novel Scene Graph Auto-Encoder (SGAE)
for image captioning. This captioning pipeline contains two step: 1) extracting the
scene graph for an image and using GCN to encode the corresponding scene graph,
then decoding the sentence by the recoding representation; 2) incorporating the im-
age scene graph to the captioning model. They also use GCNs to encode the visual
scene graph . Given the representation of visual scene graph, they introduce joint vi-
sual and language memory to choose appropriate representation to generate image
description.

20.5.2 Visual Question Answering

Visual Question Answering (VQA) aims at building a system that automatically an-
swers natural language questions about visual information. It is a challenging task
that involves mutual understanding and reasoning across different modalities. In the
past few years, benefiting from the rapid developments of deep learning, the pre-
vailing image and video question methods (Shah et al, 2019; Zhang et al, 2019g; Yu
et al, 2017a) prefer to represent the visual and linguistic modalities in a common la-
tent subspace, use the encoder-decoder framework and attention mechanism, which
has made remarkable progress.

dog

boy

in
shirt

filed

on
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filed

on

Image

Question
What is the boy doing?

Global Feature

Scene Graph

Update Edges

dog

boy

in
shirt

filed

on

Update Nodes

Answer

Fig. 20.7: GNN-based Visual QA.

However, the aforementioned methods also have not considered the graph infor-
mation in the VQA task. Recently, Zhang et al (2019a) investigates an alternative
approach inspired by conventional QA systems that operate on knowledge graphs.
Specifically, as shown in Fig. 20.7, they investigate the use of scene graphs derived
from images, then naturally encode information on graphs and perform structured
reasoning for Visual QA. The experimental results demonstrate that scene graphs,
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even automatically generated by machines, can definitively benefit Visual QA if
paired with appropriate models like GNNs. In other words, leveraging scene graphs
largely increases the Visual QA accuracy on questions related to counting, object
presence and attributes, and multi-object relationships.

Another work (Li et al, 2019d) presents the Relation-aware Graph Attention Net-
work (ReGAT), a novel framework for VQA, to model multi-type object relations
with question adaptive attention mechanism. A Faster R-CNN is used to generate a
set of object region proposals, and a question encoder is used for question embed-
ding. The convolutional and bounding-box features of each region are then injected
into the relation encoder to learn the relation-aware, question-adaptive, region-level
representations from the image. These relation-aware visual features and the ques-
tion embeddings are then fed into a multimodal fusion module to produce a joint
representation, which is used in the answer prediction module to generate an an-
swer.

20.5.3 Cross-Media Retrieval

Image-text retrieval task has become a popular cross-media research topic in re-
cent years. It aims to retrieve the most similar samples from the database in an-
other modality. The key challenge here is how to match the cross-modal data by
understanding their contents and measuring their semantic similarity. Many ap-
proaches (Faghri et al, 2017; Gu et al, 2018; Huang et al, 2017b) have been pro-
posed. They often use global representations or local to express the whole image
and sentence. Then, a metric is devised to measure the similarity of a couple of
features in different modalities. However, the above methods lose sight of the re-
lationships between objects in multi-modal data, which is also the key point for
image-text retrieval.

The students 
are listening to 
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Text

Image

Graph Structure Graph Conv

ReLU FC

Hand-crafted 
features

NN features

Joint-trained
features Feature Vector

FC FC

Similarity 
estimation

Text Input

Image Input

Fig. 20.8: Overview of dual-path neural network for Image-text retrieval.
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To utilize the graph data in image and text better, as shown in Fig. 20.8, Yu
et al (2018b) proposes a novel cross-modal retrieval model named dual-path neu-
ral network with graph convolutional network. This network takes both irregular
graph-structured textual representations and regular vector-structured visual repre-
sentations into consideration to jointly learn coupled feature and common latent
semantic space.

In addition, Wang et al (2020i) extract objects and relationships from the image
and text to form the visual scene graph and text scene graph, and design a so-called
Scene Graph Matching (SGM) model, where two tailored graph encoders encode
the visual scene graph and text scene graph into the feature graph. After that, both
object-level and relationship-level features are learned in each graph, and the two
feature graphs corresponding to two modalities can be finally matched at two levels
more plausibly.

20.6 Frontiers for Graph Neural Networks on Computer Vision

In this section, we introduce the frontiers for GNNs on Computer Vision. We focus
on the advanced modeling methods of GNN for Computer Vision and their applica-
tions in a broader area of the subfield.

20.6.1 Advanced Graph Neural Networks for Computer Vision

The main idea of the GNN modeling method on CV is to represent visual informa-
tion as a graph. It is common to represent pixels, object bounding boxes, or image
frames as nodes and further build a homogeneous graph to model their relations.
Despite this kind of method, there are also some new ideas for GNN modeling.

Considering the specific task nature, some works try to represent different forms
of visual information in the graph.

• Person Feature Patches Yan et al (2019); Yang et al (2020b); Yan et al (2020b)
build spatial and temporal graphs for person re-identification (Re-ID). They
horizontally partition each person feature map into patches and use the patches
as the nodes of the graph. GCN is further used to modeling the relation of body
parts across frames.

• Irregular Clustering Regions Liu et al (2020h) introduce the bipartite GNN
for mammogram mass detection. It first leverages kNN forward mapping to
partition an image feature map into irregular regions. Then the features in an
irregular region are further integrated as a node. The bipartite node sets are con-
structed by cross-view images respectively, while the bipartite edge learns to
model both inherent cross-view geometric constraints and appearance similari-
ties.
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• NAS Cells Lin et al (2020c) proposed graph-guided Neural Architecture
Search (NAS) algorithms. The proposed models represent an operation cell as
a node and apply the GCNs to model the relationship of cells in network archi-
tecture search.

20.6.2 Broader Area of Graph Neural Networks on Computer
Vision

In this subsection, we introduce some other application scenarios of GNNs on CV,
including but not limited to the following:

• Point Cloud Analysis Point Cloud Analysis aims to recognize a set of points
in a coordinate system. Each point is represented by its three coordinates with
some other features. In order to utilize CNN, the early works (Chen et al, 2017;
Yan et al, 2018b; Yang et al, 2018a; Zhou and Tuzel, 2018) convert a point cloud
to a regular grid such as image and voxel. Recently, a series of works (Chen
et al, 2020g; Lin et al, 2020f; Xu et al, 2020e; Shi and Rajkumar, 2020; Shu et al,
2019) use a graph representation to preserve the irregularity of a point cloud.
GCN plays a similar role as CNN in image processing for aggregating local
information. Chen et al (2020g) develops a hierarchical graph network structure
for 3D object detection on point clouds. Lin et al (2020f) proposes a learnable
GCN kernel and a 3D graph max pooling with a receptive field of K nearest
neighboring nodes. Xu et al (2020e) proposes a Coverage-Aware Grid Query
and a Grid Context Aggregation to accelerate 3D scene segmentation. Shi and
Rajkumar (2020) designs a Point-GNN with an auto-registration mechanism to
detect multiple objects in a single shot.

• Low Resource Learning Low-resource learning models the ability of learn-
ing from a very small amount of data or transferring from prior. Some works
leverage GNN to incorporate structural information for the low-resource image
classification. Wang et al (2018f); Kampffmeyer et al (2019) use knowledge
graphs as extra information to guide zero-short image classification. Each node
corresponds to an object category and takes the word embeddings of nodes as
input for predicting the classifier of different categories. Except for the knowl-
edge graph, the similarity between images in the dataset is also helpful for the
few-shot learning. Garcia and Bruna (2017); Liu et al (2018e); Kim et al (2019)
set up similarity metrics and further modeling the few-shot learning problem as
a label propagating or edge-labeling problem.

• Face Recognition Wang et al (2019p) formulates the face clustering task as
a link prediction problem. It utilizes the GCN to infer the likelihood of link-
age between pairs in the face sub-graphs. Yang et al (2019d) proposes a
proposal-detection-segmentation framework for face clustering on an affinity
graph. Zhang et al (2020b) propose a global-local GCN to perform label cleans-
ing for face recognition.
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• Miscellaneous We also introduce some distinctive GNN applications on the
subfield. Wei et al (2020) proposes a view-GCN to recognizes 3D shape
through its projected 2D images. Wald et al (2020) extends the concept of scene
graph to the 3D indoor scene. Ulutan et al (2020) leverage GCNs to reason the
interactions between humans and objects. Cucurull et al (2019) predicts fashion
compatibility between two items by formulating an edge prediction problem.
Sun et al (2020b) builds a social behavior graph from a video and uses GNNs
to propagate social interaction information for trajectory prediction. Zhang et al
(2020i) builds a vision and language relation graph to alleviate the hallucination
problem in the grounded video description task.

20.7 Summary

This chapter shows that GNN is a promising and fast-developing research field
that offers exciting opportunities in computer vision techniques. Nevertheless, it
also presents some challenges. For example, graphs are often related to real scenar-
ios, while the aforementioned GNNs lack interpretability, especially the decision-
making problems (e.g., medical diagnostic model) in the computer vision field.
However, compared to other black-box models (e.g., CNN), interpretability for
graph-based deep learning is even more challenging since graph nodes and edges
are often heavily interconnected. Thus, a further direction worth exploring is how to
improve the interpretability and robustness of GNN for computer vision tasks.

Editor’s Notes: Convolutional Neural Network has achieved huge success
in computer vision domain. However, recent years have seen the rise of re-
lational machine learning like GNNs and Transformers to modeling more
fine-grained correlations in both images and videos. Certainly, graph struc-
ture learning techniques in Chapter 14 becomes very important for con-
structing an optimized graph from an image or a video and learning node
representations on this learnt implicit graph. Dynamic GNNs in Chapter
15 will play an important role when coping with a video. GNN Methods
in Chapter 4 and GNN Scalability in Chapter 6 are then another two basic
building blocks for the use of GNNs for CV. This chapter is also highly
correlated with the Chapter 21 (GNN for NLP) since vision and language is
a fast-growing research area and multi-modality data is widely used today.


