
Chapter 19
Graph Neural Networks in Modern
Recommender Systems

Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Abstract Graph is an expressive and powerful data structure that is widely applica-
ble, due to its flexibility and effectiveness in modeling and representing graph struc-
ture data. It has been more and more popular in various fields, including biology,
finance, transportation, social network, among many others. Recommender system,
one of the most successful commercial applications of the artificial intelligence,
whose user-item interactions can naturally fit into graph structure data, also receives
much attention in applying graph neural networks (GNNs). We first summarize the
most recent advancements of GNNs, especially in the recommender systems. Then
we share our two case studies, dynamic GNN learning and device-cloud collabora-
tive Learning for GNNs. We finalize with discussions regarding the future directions
of GNNs in practice.

19.1 Graph Neural Networks for Recommender System in
Practice

19.1.1 Introduction

The Introduction of GNNs Graph has a long history originated from the Seven
Bridges of Königsberg problem in 1736 (Biggs et al, 1986). It is flexible to model

Yunfei Chu,
DAMO Academy, Alibaba Group, e-mail: fay.cyf@alibaba-inc.com

Jiangchao Yao
DAMO Academy, Alibaba Group, e-mail: jiangchao.yjc@alibaba-inc.com

Chang Zhou
DAMO Academy, Alibaba Group, e-mail: ericzhou.zc@alibaba-inc.com

Hongxia Yang
DAMO Academy, Alibaba Group, e-mail: yang.yhx@alibaba-inc.com

423

fay.cyf@alibaba-inc.com
jiangchao.yjc@alibaba-inc.com
ericzhou.zc@alibaba-inc.com
yang.yhx@alibaba-inc.com

424 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

complex relationships among individuals, which makes it a ubiquitous data struc-
ture widely applied in numerous fields, e.g., biology, finance, transportation, social
network, recommender systems.

Despite there are traditional topics of extracting deterministic information in
graph theory like shortest path, connected components, local clustering, graph iso-
morphism, and etc., machine learning applications for graph data focus more on
predicting the missing parts or future dynamics. Among these applications, the most
typical research problems studied in recent year, are predicting whether there exists
or will emerge an edge between two nodes (link prediction), and inferring node-level
or graph-level labels (node/graph classification).

The recent progress in deep learning leads to a booming learning paradigm called
representation learning, which also becomes the de facto standard in solving graph
machine learning problems. The idea of graph representation learning is to encode
graph primitives as real-valued vectors in the same metric space, which are then
involved in downstream applications. The encoder takes as input the original graph
such as node attributes vector and graph adjacency matrix in an end-to-end fash-
ion, rather than traditional methods that require extracting heuristic features such as
betweenness centrality, pagerank value, number of closed triangles.

Next, we summarize recent graph node representation techniques in a unified
framework and focus only on the link prediction task. We illustrate several repre-
sentative approaches in recent literature from a node-centric perspective, since the
node-centric view can naturally fit into scalable message passing implementations
that are originally popular in graph mining community (Malewicz et al, 2010; Y.Low
et al, 2012) and then borrowed to GNNs community (Wang et al, 2019f; Zhu et al,
2019c).

For a graph G = (V ,E) with adjacency matrix A, a standard graph neural net-
work model has the following components.

• An ego-network extractor EGO that extracts a local subgraph around the node
v. This local subgraph is also referred to as the receptive field of v which is then
used by the node encoder.

• An encoder ENC that maps each node v 2 V into a vector in a metric space
Rd . The encoder takes as input the ego-network of v, as well as any node/edge
representation in EGO(v). A similarity function is defined on Rd to measure
how close two nodes appear to be.

• A learning objective L . We do not discuss node classification here and only
focus on unsupervised node representation learning. The objective can be re-
constructing the adjacency matrix A, transformations of A, or any sampled form
of A and its transformations.

Random Walk-style

Early graph representation learning approaches (Perozzi et al, 2014; Tang et al,
2015b; Cao et al, 2015; Zhou et al, 2017; Ou et al, 2016; Grover and Leskovec,
2016) in deep learning era are inspired by word2vec (Mikolov et al, 2013b), an ef-
ficient word embedding method in natural language processing community. These

19 Graph Neural Networks in Modern Recommender Systems 425

methods do not need any neighborhood for encoding, where EGO plays as an iden-
tity mapping. The encoder ENC takes as the node id in the graph and assigns a
trainable vector to each node.

The very different part of these methods is the learning objective. Approaches
like Deepwalk, LINE, Node2vec use different random walk strategies to create pos-
itive node pairs (u,v) as the training example, and estimate the probability of visiting
v given u, p(v|u), as a multinomial distribution,

p(v|u) =
exp(sim(u,v))

Âv0 exp(sim(u,v0))
,

where sim is a similarity function. They exploit an approximated Noise Constrained
Estimation (NCE) loss (Gutmann and Hyvärinen, 2010), known as skip gram with
negative sampling originated in word2vec as the following, to reduce the high com-
putation cost,

logs(sim(u,v))+ kEv0⇠qneg log(1�s(sim(u,v0))).

qneg is a proposed negative distribution, which impacts the variation of the optimiza-
tion target (Yang et al, 2020d). Note that this formula can be also approximated with
sampled softmax (Bengio and Senécal, 2008; Jean et al, 2014), which in our expe-
rience performs better in top-k recommendation tasks as the node number becomes
extremely large (Zhou et al, 2020a).

These learning objectives have connections with traditional node proximity mea-
surements in graph mining community. GraRep (Cao et al, 2015), APP (Zhou et al,
2017) borrows the idea from (Levy and Goldberg, 2014) and point out these random
walk based method are equivalent to preserving their corresponding transformations
of the adjacency matrix A, such as personalized pagerank.

Matrix Factorization-style

HOPE (Ou et al, 2016) provides a generalized matrix form of other types of node
proximity measurement, e.g., katz, adamic-adar, and adopts matrix factorization to
learn embedding that preserve these proximity. NetMF (Qiu et al, 2018) unifies
several classic graph embedding methods in the framework of matrix factorization,
provides connections between the deepwalk-like approaches and the theory of graph
Laplacian.

GNN-style

Graph neural network (Kipf and Welling, 2017b; Scarselli et al, 2008) provides
an end-to-end semi-supervised learning paradigm that was previously modeled via
label propagations. It can also be used to learn node representations in an unsu-
pervised manner like the above graph embedding methods. GNN-like approaches
for unsupervised learning, compared to deepwalk-like methods, are more power-
ful in capturing local structural, e.g., have at most the power of WL-test (Xu et al,

426 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

2019d). The downstream link prediction task that requires local-structural aware
representation or cooperation with node features may benefit more from GNN-style
approaches.

The EGO operator collects and constructs the receptive field of each node. For
GCN (Kipf and Welling, 2017b), a full k-layer neighborhood is required for each
node, making it hard to work for large graphs which usually follow power-law de-
gree distribution. GraphSage (Hamilton et al, 2017b) instead samples a fixed-size
neighborhood in each layer, mitigates this problem and can scale to large graphs.
LCGNN (Qiu et al, 2021) samples a local cluster around each node by short random-
walks with theoretical guarantee.

Then different kinds of Aggregation functions are proposed within this receptive
field. GraphSage investigates several neighborhood aggregation alternatives, includ-
ing mean/max pooling, LSTM. GAT (Veličković et al, 2018) utilizes self-attention
to perform the aggregation, which shows stable and superior performance in many
graph benchmarks. GIN (Xu et al, 2019d) has a slightly different aggregation func-
tion, whose discriminative/representational power is proved to be equal to the power
of the WL test. As link prediction task may also consider structural similarity be-
tween two nodes besides their distance, this local structural preserving method may
achieve good performance for networks that have obvious local structural patterns.

The learning objectives of GNN-style approaches are similar with those in ran-
dom walk style ones.

Introduction of Modern Recommender System

Recommender system, one of the most successful commercial applications of the
artificial intelligence, whose user-item interactions can naturally fit into graph struc-
ture data, also receives much attention to applying GNNs. We now give a brief in-
troduction about the problem settings, the classic methods in recommender systems.

The user-item relationships are the most typical form of recommender systems,
e.g., news recommendation, e-commerce recommendation, video recommendation.
Although recommender systems are eventually optimizing for a complex ecosystem
of multi-sided participants (Abdollahpouri et al, 2020), i.e., the users, the platform
and the content provider, we only focus on how the platform will maximize the
user-side utility in this chapter.

In a user-item recommender system S with recommender algorithm A , U is
the user set and I is the item set. At timestamp t, a user u 2 U visits S , a list
of items Iu,t is produced by A . u takes positive actions, e.g., click, buy, play, on
parts of the items in Iu,t , referred to as I +

u,t , while performing the corresponding
negative actions on the others, e.g., not click, not buy, not play, referred to as I �u,t .

The basic data collected from an industrial recommender system, can be de-
scribed as

DS ,A = {(t,I +
u,t ,I

�
u,t)|u 2U , t}. (19.1)

19 Graph Neural Networks in Modern Recommender Systems 427

The short-term objective 1 of an algorithm in modern recommender systems, can be
summarized as

A = argmax
A

Â
u,t

Utility(I +
u,t), (19.2)

in which the Utility function could be considered as maximizing click through rate,
GMV, or a mixture of multiple objectives (Ribeiro et al, 2014; McNee et al, 2006).

A modern commercial recommender system, especially for those with over mil-
lions of end-users and items, has adopted a multi-stage modeling pipeline as the
tradeoff between the business goals and the efficiency given the constraints of lim-
ited computing resources. Different stages have different simplifications of the data
organization and objectives, which many research papers do not put in a clear way.

In the following, we first review several simplifications of the industrial recom-
mendation problem setting, that are clean enough for the research community. Then
we describe the multi-stage pipeline and the problem in each stage, review clas-
sic methods to handle the problem and revisit how GNNs are applied in existing
methods, trying to give an objective view about these methods.

Simplifications of the collected data.

• Impression bias. The user feedback data generated under algorithm A , has
a bias towards estimating the oracle user preference. This critical and unique
problem for recommender system, is usually not considered, especially for the
early works.

• Negative feedback. |L �
u,t |, the number of negative behaviors in one display, is

orders of magnitude larger than |L +
u,t |, and very few dataset has collected nega-

tive feedback. Most of the well-known papers in the research community ignore
those true negative user feedback, instead, they simulate negative feedback by
sampling from a proposal distribution, which is not the ground truth and the
metrics designed over the simulated feedback may not reveal true performance.

• Temporal information. Early studies prefer a static view of recommendation,
which eliminates the temporal information of t in the user behavior sequences.

Multi-stage model pipeline in modern recommender systems.

• Retrieval Phase. This phase is also referred to as candidate generation or recall
phase. It narrows down the collection of relevant items from billions to hundreds
via efficient similarity-based learning, indexing, and searching. To prevent from
sticking into dead loops caused by fitting the exposure distribution, retrieval
phase has to independently provide sufficient diversity for different downstream
purposes or strategies, while retaining the accuracy. As the candidate set is in
extremely large size, approaches in the recall phase are usually in the form
of point-wise modeling that is simple to build sophisticated index and perform

1 We indicate the short-term objective as the objective in the sense of each request response. Here
we do not consider further impacts on the ecosystem brought by an algorithm.

428 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Table 19.1: Data simplifications in different settings

Setting / Phase in Pipeline Data Simplification

Matrix Completion / Retrieval Phase DS = {L +
u |u 2U }

Click Through Rate Prediction / Rank Phase DS = {(L +
u ,L �

u)|u 2U }
Sequential Recommendation / Retrieval Phase DS = {(t,L +

u,t)|u 2U , t}

efficient retrieval. The most widely used measurement for this phase is the top-k
hit ratio.

• Rank Phase. The problem space is quite different from those in the retrieval
phase, since rank phase needs to give precise comparison within a much smaller
subspace, instead of recalling as many as good items from the entire item candi-
dates set. Restricted to a small number of candidates, it is capable of exploiting
more complex methods over the user-item interaction in acceptable response
time.

• Re-rank Phase. Considering the effects studied in the discrete choice model (Train,
1986), the relationships among the displayed items may have significant im-
pacts on the user behavior. This poses opportunities to consider from the combi-
national optimization perspective, i.e., how to chose a combination of the subset
which maximizes the whole utilities of the recommendation list.

The above stages can be adjusted according to different characteristics of the recom-
mendation scenario. For example, if the candidate set is at hundreds or thousands,
recall phase is not necessarily required as the computation power is usually enough
to cover such rank-all operation at once. The re-rank phase is also not necessary if
the item number per request is few.

We summarize in Table 19.1 the different data simplifications made in different
problem settings with their corresponding pipeline stages.

19.1.2 Classic Approaches to Predict User-Item Preference

The fundamental ability required by Recommender System is to predict the possi-
bility that a user will take actions on a specific displayed item, which we refer to as
the point-wise preference estimation, p(item|user). Now we review several classic
approaches in dealing with the cleanest setting of Matrix Completion in Table 19.1.

The user-item iteraction matrix perspective of data organization DS = {L +
u |u2

U } is M = {Mu,i|u 2U , i 2I }, where each row Mu = L +
u . The famous Collabo-

rative Filtering methods in recommendation can be categorized into neighborhood-
based one and model-based one.

19 Graph Neural Networks in Modern Recommender Systems 429

Neighborhood-based Approaches

Item-based collaborative filtering first identifies a set of similar items for each of the
items that the user has clicked/purchased/rated, and then recommends top-N items
by aggregating the similarities. User-based CF, on the other hand, identifies similar
users and then performs aggregation on their clicked items.

The key part in Neighborhood-based Approaches is the definition of the similar-
ity metric. Take item-based CF as an example, top-k heuristic approaches calculate
item-item similarity from the user-item interaction matrix M, e.g., pearson corre-
lation, cosine similarity. Storing |I |x|I | similarity score pairs is intractable. In-
stead, to help produce a top-k recommendation list efficiently, neighborhood-based
k-nearest-neighbor CF usually memorizes top few similar items for each item, re-
sulting in a sparse similarity matrix C. Despite the heuristics, SLIM (Ning and
Karypis, 2011) learns such sparse similarity by reconstructing M via MC with zero
diagonal and sparse constraints in C.

One draw back of storing only the sparse similarity is that, it cannot identify
less-similar relationships which restricts its downstream applications.

Model-based Approaches

Model-based methods learn similarity functions between user and item by optimiz-
ing an objective function. Matrix Factorization, the prior of which is that the user-
behavior matrix is low-rank, i.e., all users’ tastes can be described by linear com-
binations of a few style latent factors. The prediction for a user’s preference on an
item can be calculated as the dot product of the corresponding user and item factor.

19.1.3 Item Recommendation in user-item Recommender Systems:
a Bipartite Graph Perspective

The matrix completion setting also has an equivalent form in bipartite graph,

G = (V ,E), (19.3)

where V = U [I , i.e., the union of the user set U and the item set I , and
E = {(u, i)|i 2I +

u , u 2U }, i.e., the collection of the edges between u and his/her
clicked i. Then the point-wise user-item preference estimation can be viewed as a
link prediction task in this user-item interaction bipartite graph.

Heuristic graph mining approaches, which fall into the category of neighborhood-
based CF, are widely used in the retrieval phase. We can calculate user-item similar-
ity by performing graph mining tasks like Common Neighbors, Adar (Adamic and
Adar, 2003), Katz (Katz, 1953), Personalized PageRank (Haveliwala, 2002), over
the original bipartite graph, or calculate item-item similarity on its induced item-
item correlation graph (Zhou et al, 2017; Wang et al, 2018b) which are then used in
the final user preference aggregation.

430 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Graph embedding techniques for industrial recommender system are first ex-
plored in (Zhou et al, 2017) and its successor with side information support (Wang
et al, 2018b). They construct an item correlation graph of billions of edges from
user-item click sequences organized by sessions. Then a deepwalk-style graph em-
bedding method is applied to calculate the item representations, which then provides
item-item similarities in the retrieval phase. Though it’s shown in (Zhou et al, 2017)
that embedding based method has advantage in scenarios where the top-k heuristics
cannot provide any item-pair similarity, it’s still debatable whether the similarity
given by graph embedding methods can outperform carefully designed heuristic
ones when all the top-k similar item can be retrieved.

We also note that, graph embedding techniques can be regarded as matrix factor-
ization for a transformation of the graph adjacency matrix A, as discussed in earlier
sections. That means, theoretically the difference between graph embedding tech-
niques and the basic matrix factorization are their priors, i.e., what matrix is assumed
to be the best to factorize. Factorization of the transformations of A indicates to fit
an evolved system in the future while traditional MF methods are factorizing the
current static system.

Graph neural networks for industrial recommender system are first studied
in (Ying et al, 2018b), whose backend model is a variant of GraphSage. PinSage
computes the L1 normalized visit counts of nodes during random walks started
from a given node v, and the top-k counted nodes are regarded as v’s receptive field.
Weighted aggregation is performed among the nodes according to their normalized
counts. As GraphSage-like approaches do not suffer from too large neighborhood,
PinSage is scalable to web-scale recommender system with millions of users and
items. It adopts a triplet loss, instead of NCE-variants that are usually used in other
papers.

We want to discuss more about the choice of negative examples in representa-
tion learning based recommender models, including GNNs, in the retrieval phase.
As retrieval phase aims to retrieve the k most relevant items from the entire item
space, it’s crucial to keep an item’s global position far from all irrelevant items.
In an industrial system with an extremely large candidate set, we find the perfor-
mance of any representation-based model very sensitive to the choice of negative
samples and the loss function. Though there seems a trend in mixing all kinds of
hand-crafted hard examples (Ying et al, 2018b; Huang et al, 2020b; Grbovic and
Cheng, 2018) in binary cross entropy loss or triplet loss, unfortunately, it has even
no theoretical support that can lead us to the right direction. In practice, we find
it a good choice to apply sampled softmax (Jean et al, 2014; Bengio and Senécal,
2008), InfoNCE (Zhou et al, 2020a) in the retrieval phase with an extremely large
candidate set, where the latter has also an effect of debiasing.

GNNs are a useful tool to incorporate with relational features of user and item.
KGCN (Wang et al, 2019e) enhances the item representation by performing ag-
gregations among its corresponding entity neighborhood in a knowledge graph.
KGNN-LS (Wang et al, 2019c) further poses a label smoothness assumption, which
posits that similar items in the knowledge graph are likely to have similar user pref-
erence. It adds a regularization term to help learn such a personalized weighted

19 Graph Neural Networks in Modern Recommender Systems 431

knowledge graph. KGAT (Wang et al, 2019j) shares a generally similar idea with
KGCN. The only main difference is an auxiliary loss for knowledge graph recon-
struction.

Despite there are many more paper discussing about how to fuse external knowl-
edge, relationships of other entities, which all argue it’s beneficial for downstream
recommendation tasks, one should seriously consider whether its system needs such
external knowledge or it will introduce more noises than benefits.

19.2 Case Study 1: Dynamic Graph Neural Networks Learning

19.2.1 Dynamic Sequential Graph

In a recommender, we can obtain a list of user-item interaction tuples E = {(u, i, t)}
observed in a time window, where the user u 2 U interacts with an item i 2 I
associated with an timestamp t 2 R+. For a user u 2U (or an item i 2I) at time
t, we define the 1-depth dynamic sequential subgraph of user u (or item i) at time
t as a set of interactions of user u (or item i) before time t in chronological order,
denoted by G (1)

u,t = {(u, i,t)|t < t,(u, i,t) 2 E } (or G (1)
i,t = {(u, i,t)|t < t,(u, i,t) 2

E }). Given the k-depth dynamic sequential subgraphs G (k)
i,t for i 2 I (or G (k)

u,t for
u 2U), we define the (k+1)-depth dynamic sequential subgraph of user u (or item
i) at time t as a set of k-depth dynamic sequential subgraphs that user u (or item
i) interacts in chronological order with its 1-depth dynamic sequential subgraphs,
G (k+1)

u,t = {G (k)
i,t |t < t,(u, i,t) 2 E }[G (1)

u,t (or G (k+1)
i,t = {G (k)

u,t |t < t,(u, i,t) 2 E }[
G (1)

i,t). The illustration of DSG is shown in Figure 19.1. We define the historical
behavior sequence of user u (or item i) at time t as a sequence of interacted items
(or users) in chronological order, denoted by Su,t = {(i,t)|t < t,(u, i,t) 2 E } (or
Si,t = {(u,t)|t < t,(u, i,t) 2 E }).

……

!"#$%&

…

………

…… …

…

Emma

Lucy Anna

t3

t1

t2

(a) Dynamic sequential graphs in recommendation. (b) An example of a user’s 3-depth DSG.

G(3)
u0,t0

G(2)
i1,t1

G(1)
u1,t2

u0

Su0,t0

Si1,t1

i1

u1

target user

candidate item

Fig. 19.1: Illustration of Dynamic Sequential Graph. DSG is a heterogeneous time-
evolving dynamic graph combining the high-hop connectivity in graphs and the
temporal dependency in sequences. DSG is constructed from bottom to top recur-
sively.

432 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

19.2.2 DSGL: Dynamic Sequential Graph Learning

19.2.2.1 Overview

 Embedding Layer

Time-aware
Seq ENC

Time-aware
Seq ENC

Time-aware
Seq ENC

Time-aware
Seq ENC

Time-aware
Seq ENC

Concatenate

Layer 3

Layer 2
Layer 1

Layer 2

Layer 1

User 3-depth DSG Item 2-depth DSG

Query Query Query Query Query

2-nd ATT

Time Feature

2-nd ATT 2-nd ATT 2-nd ATT 2-nd ATT

Layer Combination Layer Combination

Aggregation

MLP

ftime

x
(1)
u,t

x
(2)
u,t

x
(3)
u,t

x
(1)
i,t

x
(2)
i,t

Loss

x̂u,t x̂i,t

G(2)
i,tG(3)

u,t

Fig. 19.2: Framework of the proposed DSGL method. DSGL constructs DSGs for
the target user u (left) and the candidate item i (right) respectively. Their representa-
tions are refined with multiple aggregation layers, each of which consists of a time-
aware sequence encoding layer and a second-order graph attention layer. DSGL gets
the final representations via layer combination followed by an MLP-based predic-
tion layer. Modules of the same color share the same set of parameters.

Based on the constructed user-item interaction DSG, we propose the edge learn-
ing model named Dynamic Sequential Graph Learning (DSGL), as illustrated in
Figure 19.2. The basic idea of DSGL is to perform graph convolution iteratively on
the DSGs for the target user and the candidate item on their corresponding devices,
by aggregating the embeddings of neighbors as the new representation of a target
node. The aggregator consists of two parts: (1) the time-aware sequence encoding
that encodes the behavior sequence with time information and temporal dependency
captured; and (2) the second-order graph attention that activates the related behavior
in the sequence to eliminate noisy information. Besides the above two components,
we also propose an embedding layer that initializes user, item, and time embed-
dings, a layer combination module that combines the embeddings of multiple layers
to achieve final representations, and a prediction layer that outputs the prediction
score.

19 Graph Neural Networks in Modern Recommender Systems 433

19.2.2.2 Embedding Layer

There are four groups of inputs in the proposed DSGL: the target user u, the candi-
date item i, the k-depth DSGs of the target user G k

u,t and (k-1)-depth DSGs of the can-
didate item G k�1

i,t . For each field of discrete features, such as age, gender,category,
brand, and ID, we represent it as an embedding matrix. By concatenating all fields
of features, we have the node feature of items, denoted by fitem 2 Rdi . Similarly,
fuser 2 Rdu represents the concatenated embedding vectors of fields in the category
of user. As for the interaction timestamp in DSG, we compute the time intervals
between the interaction time and its parent interaction time as time decays. Given
a historical behavior sequence Su,t of user u at the timestamp t, each interaction
(u, i,t) 2 Su,t corresponds to a time decay D(u,i,t) = t � t . Following (Li et al,
2020g), we transform the continuous time decay values to discrete features by map-
ping them to a series of buckets with the ranges [b0,b1), [b1,b2), . . . , [bl ,bl+1), where
the base b is a hyper-parameter. Then by performing the embedding lookup opera-
tion, the time decay embedding can be obtained, denoted by ftime 2 Rdt .

19.2.2.3 Time-Aware Sequence Encoding

The nodes at each layer of DSGs are in time order, which reflects the time-varying
preference of users as well as the popularity evolution of items. Thus we perform
sequence modeling as a part of GNN to capture the dynamics of the interaction se-
quences. We design a time-aware sequential encoder to utilize the time information
explicitly. For each interaction (u, i, t), we have the historical behavior sequence Su,t
of user u and Si,t of item i. For sequence Su,t , by feeding each interacted item along
with the time decay in the sequence into the embedding layer, the behavior embed-
ding sequence is formed with the combined feature sequence, as {ei,t |(i,t)2Su,t},
where ei,t = [fitemi ; ftimet] 2 Rdi+dt is the embedding of item i in the sequence. Sim-
ilarly, for sequence Si,t , we have the embedding sequence as {eu,t |(u,t) 2 Si,t},
where eu,t = [fuseru ; ftimet] 2 Rdu+dt . We take the obtained embedding as the zero-
layer of inputs in the time-aware sequence encoder, i.e., x(0)

u,t = eu,t and x(0)
i,t = ei,t .

For ease of notation, we will drop the superscript in the rest of the following two
subsections.

In the time-aware sequence encoding, we infer the hidden state of each node in
the behavior sequence step by step in a RNN-based manner. Given the behavior
sequences Su,t and Si,t , we represent j-th item’s hidden states and inputs in the
sequence Su,t as hitem j and xitem j , and j-th user’s hidden states and inputs in the
sequence Si,t as huser j and xuser j . The forward formulas are

hitem j = Hitem(hitem j�1 ,xitem j); huser j = Huser(huser j�1 ,xuser j). (19.4)

where Huser(·, ·) and Hitem(·, ·) represent the encoding functions specific to user and
item, respectively. We adopt the long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) as the encoder instead of the Transformer (Vaswani et al, 2017),

434 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

since LSTM can utilize time feature to control the information to be propagated
with the time decay feature as inputs. After the time-aware sequence encoding, we
obtain the corresponding hidden states sequence of historical behavior sequence
Su,t of user u and Si,t of item i. The time-aware sequence encoding functions can
be represented as:

LSTMitem({xi,t |(i,t) 2Su,t}) = {hi,t |(i,t) 2Su,t};
LSTMuser({xu,t |(u,t) 2Si,t}) = {hu,t |(u,t) 2Si,t}.

(19.5)

19.2.2.4 Second-Order Graph Attention

In practice, there may exist noisy neighbors, whose interest or audience is irrele-
vant to the target node. To eliminate the noise brought by the unreliable nodes, we
propose an attention mechanism to activate related nodes in the behavior sequence.
Traditional graph attention mechanism, like GAT (Veličković et al, 2018), computes
attention weights between the central node and the neighbor nodes, which indicate
the importance of each neighbor node to the central node. Although they perform
well on the node classification task, they may increase noise diffusion for recom-
mendation when there exists an unreliable connection.

To address the above problem, we propose a graph attention mechanism that uses
both the parent node of the central node and the central node itself to build the query
and takes the neighbor nodes as the key and value. Since we use the parent node of
the central node to enhance the expressive power of the query, which is connected
to the key node with two hops, we name it second-order graph attention. The parent
node of the central node can be seen as a complement when the central node is
unreliable, thus improving the robustness.

Following the scaled dot-product attention (Vaswani et al, 2017), the attention
function is defined as

Attention(Q,K,V) =
softmax(QK>)p

d
V (19.6)

where Q, K and V represent the query, key and value, respectively, and d is the
dimension of K and Q. The multi-head attention is defined as follows:

MultiHead(Q,K,V) = [head1;head2; . . . ;headh]WO (19.7)

headi = Attention(QWQi ,KWKi ,VWVi) (19.8)

where weights WQ, WK , WV and WO are trained parameters.
Given the behavior hidden states sequence {hi,t |(i,t) 2Su,t} and {hu,t |(u,t) 2

Si,t} after the time-aware sequence encoding, we represents the attention process
as:

19 Graph Neural Networks in Modern Recommender Systems 435

xu,t = ATTitem({hi,t |(i,t) 2Su,t});xi,t = ATTuser({hu,t |(u,t) 2Si,t}). (19.9)

19.2.2.5 Aggregation and Layer Combination

The core idea of GCN is to learn representation for nodes by performing convolution
over their neighborhood. In DSGL, we stack the time-aware sequence encoding and
the second-order graph attention, and the aggregator can be represented as:

x(k+1)
u,t = ATTitem(LSTMitem({x(k)

i,t |i 2Su,t}));

x(k+1)
i,t = ATTuser(LSTMuser({x(k)

u,t |i 2Si,t})).
(19.10)

Different from traditional GCN models that use the last layer as the final node rep-
resentation, inspired by (He et al, 2020), we combine the embeddings obtained at
each layer to form the final representation of a user (an item):

x̂u,t =
1
ku

ku

Â
k=1

x(k)
u,t ; x̂i,t =

1
ki

ki

Â
k=1

x(k)
i,t , (19.11)

where Ku and Ki denote the numbers of DSGL layers for user u and item i, respec-
tively.

19.2.3 Model Prediction

Given an interaction triplet (u, i, t), we can predict the possibility of the user inter-
acting with the item as:

ŷ = F (u, i,G (k)
u,t ,G (k�1)

i,t ;Q) = MLP([eu,t ;ei,t ; x̂u,t ; x̂i,t]) (19.12)

where MLP(·) represents the MLP layer and Q denotes the network parameters. We
adopt the cross-entropy loss function:

L =� Â
(u,i,t,y)2D

[y log ŷ+(1� y) log(1� ŷ)] (19.13)

where D is the set of training samples, and y 2 {0,1} denotes the real label. The
algorithm procedure is presented in Algorithm 1.

436 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Algorithm 2 The algorithm of DSGL.
Input:

The training set D = {(u, i, t,y)}; User set U ; Item set I ; Interaction set E ; Depths ku,ki;
Number of epochs E.

Output: Network parameters Q .
1: Initialize input feature fuseru of user u 2U and fitemi of item i 2I ;
2: for e 1 to E do
3: for (u, i, t,y) 2D do
4: Construct DSGs G (ku)

u,t , G (ki)
i,t for user u and item i from E ;

5: for (v, j,t) 2 G (ku)
u,t

S
G (ki)

i,t do
6: Obtain the behavior sequence Sv,t and S j,t ;
7: x(0)

v,t ev,t ; x(0)
j,t e j,t ;

8: for k 1 to ku do
9: x(k)

v,t ATTitem(LSTMitem({x(k�1)
j,t |i 2Sv,t}));

10: end for
11: for k 1 to ki do
12: x(k)

j,t ATTuser(LSTMuser({x(k�1)
v,t |i 2S j,t}));

13: end for
14: end for
15: x̂u,t 1

ku
Âku

k=1 x(k)
u,t ; x̂i,t 1

ki
Âki

k=1 x(k)
i,t ;

16: ŷu,i,t MLP([eu,t ;ei,t ; x̂u,t ; x̂i,t]);
17: Update the parameters Q by optimizing Eq.19.13;
18: end for
19: end for=0

19.2.4 Experiments and Discussions

We evaluate our methods on the real-world Amazon product datasets2, and use
five subsets. The widely used metrics for the CTR prediction task, i.e., AUC (the
area under the ROC curve) and Logloss, are adopted. The compared recommen-
dation methods can be grouped into five categories, including conventional meth-
ods (SVD++ (Koren, 2008) and PNN (Qu et al, 2016)), sequential methods with
user behaviors (GRU4Rec (Hidasi et al, 2015), CASER (Tang and Wang, 2018),
ATRANK (Zhou et al, 2018a) and DIN (Zhou et al, 2018b)), sequential methods
with user and item behaviors (Topo-LSTM (Wang et al, 2017b), TIEN (Li et al,
2020g) and DIB (Guo et al, 2019a)), static-graph-based methods (NGCF (Wang
et al, 2019k) and LightGCN (He et al, 2020)), and dynamic-graph-based method
(SR-GNN (Wu et al, 2019c)).

19.2.4.1 Performance Comparison

To demonstrate the performance of the proposed model, we compare DSGL with
the state-of-the-art recommendation methods. We find that DSGL consistently out-

2 http://snap.stanford.edu/data/amazon/productGraph/

19 Graph Neural Networks in Modern Recommender Systems 437

performs all other baselines, demonstrating its effectiveness. The sequential models
outperform the conventional methods by a large margin, proving the effectiveness of
capturing temporal dependency in recommendation. The sequential methods which
model both user behaviors and item behaviors outperform the methods that only use
the user behavior sequences, which verifies the importance of both user- and item-
side behavior information. The performance of the static-graph-based methods, in-
cluding LightGCN and NGCF, are not competitive. The reasons are two folds. First,
these methods ignore the new interactions in the testing set in the inference phase.
Second, since they do not model the temporal dependency of interactions, they
cannot capture the evolving interests, degrading the performances compared with
sequential models. The session-graph-based method SR-GNN outperforms static-
graph-based methods, because SR-GNN incorporates all the interacted items before
the current moment into graphs dynamically. However, it underperforms the se-
quential methods. One possible reason could be that the ratio of repeated items in
the sequences is low in the Amazon datasets, and the transitions of items are not
complex enough to be modeled as graphs.

19.2.4.2 Effectiveness of Graph Structure and Layer Combination

To show the effectiveness of the graph structure and layer combination, we compare
the performance of DSGL and its variant DSGL w/o LC that uses the last layer
instead of the combined layer as the final representation w.r.t different numbers
of layers. Focusing on DSGL with layer combination, the performance gradually
improves with the increase of layers. We attribute the improvement to the collab-
orative information carried by the second-order and third-order connectivity in the
graph structure. Comparing DSGL and DSGL w/o LC, we find that removing the
layer combination degrades the performance largely, which demonstrates the effec-
tiveness of layer combination.

19.2.4.3 Effectiveness of Time-Aware Sequence Encoding

In DSGL, we perform time-aware sequence encoding to preserve both the order of
behaviors and the time information. Thus, we design ablation experiments to study
how the temporal dependency and time information in DSGL contributes to the
final performance. To evaluate the role of time information, we test the removal of
time feature only of the item bahavior (i.e., DSGL w/o time in UBH), of the user
behavior (i.e., DSGL w/o time in IBH), and of both behaviors (i.e., DSGL w/o
time). To evaluate the contribution of the behavior order, we test the removal of
the sequence encoding module while retaining time information (i.e., DSGL w/o
Seq ENC) and the removal of the time-aware sequence encoding (i.e., DSGL w/o
TA Seq ENC). From the comparison, we find that DSGL outperforms DSGL w/o
TA Seq ENC by a significant margin, demonstrating the efficacy of the time-aware
sequence encoding layer. Comparing DSGL w/o time, DSGL w/o time in UBH and

438 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

DSGL w/o time in IBH with the default DSGL, we observe that removing the time
information on either user or item behavior side will cause performance degradation.
DSGL outperforms DSGL w/o Seq ENC, confirming the importance of temporal
dependency carried by the historical behavior sequence.

19.2.4.4 Effectiveness of Second-Order Graph Attention

In DSGL, we propose a second-order graph attention to eliminate noise from unre-
liable neighbors. To justify its rationality, we explore different choices here. We test
the performance without graph attention (i.e., DSGL w/o ATT). We also replace the
second-order graph attention with the traditional graph attention (i.e., DSGL-GAT).
Note that the attention function in DSGL-GAT here is the same as the one in DSGL,
and the only difference is the query. DSGL-GAT takes the central node as the query.
From the results, we have the following observations:

• The best setting in all cases is adopting the second-order graph attention (i.e., the
current design of DSGL). Replacing it with GAT drops the performance, demon-
strating the effectiveness of second-order attention in activating related neighbors
and eliminating the noise from reliable neighbors.

• Removing the attention mechanism (i.e., DSGL w/o ATT), the performance de-
grades largely, worse than DSGL with traditional graph attention. In some cases,
the performance is even not as good as the best baseline. The observation demon-
strates the necessity to introduce the attention mechanism in GNN-based recom-
mendation methods due to the inevitable noise in the multi-hop neighborhood.

19.3 Case Study 2: Device-Cloud Collaborative Learning for
Graph Neural Networks

19.3.1 The proposed framework

Recently, several works (Sun et al, 2020e; Cai et al, 2020a; Gong et al, 2020; Yang
et al, 2019e; Lin et al, 2020e; Niu et al, 2020) have explored the on-device comput-
ing advantages in recommender systems. This drives the development of on-device
GNNs, e.g., DSGL in the previous section. However, these early works either only
consider the cloud modeling, or on-device inference, or the aggregation of the tem-
poral on-device training pieces to handle the privacy constraint. Little has explored
the device modeling and the cloud modeling jointly to benefit both sides for GNNs.
To bridge this gap, we introduce a Device-Cloud Collaborative Learning framework
as shown in Figure 23.2. Given a recommendation dataset {(xn,yn)}n=1,...,N , we tar-
get to learn a GNN-based mapping function f : xn! yn on the cloud side. Here, xn is
the graph feature that contains all available candidate features and user context, yn is
the user implicit feedback (click or not) to the corresponding candidate and N is the

19 Graph Neural Networks in Modern Recommender Systems 439

MetaPatch

 
Candidates

Feedback

Ranking

MoMoDistill

All
Samples

Model-over-Models
Distillation

Cloud Device

… …

……

Optimize

Fig. 19.3: The general DCCL framework for recommendation. The cloud side is
responsible to learn the centralized cloud GNN model via the model-over-models
distillation from the personalized on-device GNN models. The device receives the
cloud GNN model to conduct the on-device personalization. We propose MoMoDis-
till and MetaPatch to instantiate each side respectively.

sample number. On the device side, each device (indexed by m) has its own local
dataset,

n
(x(m)

n ,y(m)
n)

o

n=1,...,N(m)
. We add a few parameter-efficient patches (Yuan

et al, 2020a) to the cloud GNN model f (freezing its parameters on the device side)
for each device to build a new GNN f (m) : x(m)

n ! y(m)
n . In the following, we will

present the practical challenges in the deployment and our solutions.

19.3.1.1 MetaPatch for On-device Personalization

Although the device hardware has been greatly improved in the recent years, it is
still resource-constrained to learn a complete big model on the device. Meanwhile,
only finetuning last few layers is performance-limited due to the feature basis of
the pretrained layers. Fortunately, some previous works have demonstrated that it is
possible to achieve the comparable performance as the whole network finetuning via
patch learning (Cai et al, 2020b; Yuan et al, 2020a; Houlsby et al, 2019). Inspired
by these works, we insert the model patches on basis of the cloud model f for on-
device personalization. Formally, the output of the l-th layer attached with one patch
on the m-th device is expressed as

f (m)
l (·) = fl(·)+h(m)

l (·)� fl(·), (19.14)

where LHS of Eq.19.14 is the sum of the original fl(·) and the patch response of
fl(·). Here, h(m)

l (·) is the trainable patch function and � denotes the function com-
position that treats the output of the previous function as the input. Note that, the
model patch could have different neural architectures. Here, we do not explore its
variants but specify the same bottleneck architecture like (Houlsby et al, 2019).

Nevertheless, we empirically find that the parameter space of multiple patches is
still relatively too large and easily overfits the sparse local samples. To overcome

440 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

this issue, we propose MetaPatch to reduce the parameter space. It is a kind of meta
learning methods to generate parameters (Ha et al, 2017; Jia et al, 2016). Concretely,
assume the parameters of each patch are denoted by q (m)

l (flatten all parameters in
the patch into a vector). Then, we can deduce the following decomposition

q (m)
l = Ql ⇤ q̂ (m), (19.15)

where Ql is the globally shared parameter basis (freezing it on the device and learned
in the cloud) and q̂ (m) is the surrogate tunable parameter vector to generate each
patch parameter q (m)

l in the device-GNN-model f (m). To facilitate the understand-
ing, we term q̂ (m) as the metapatch parameter. In this paper, we keep the number of
patch parameters is greatly less than that of the metapatch parameters to be learned
for personalization. Note that, regarding the pretraining of Ql , we leave the discus-
sion in the following section to avoid the clutter, since it is learned on the cloud
side. According to Eq. 19.15, we implement the patch parameter generation via the
metapatch parameter q̂ (m) instead of directly learning q (m). To learn the metapatch
parameter, we can leverage the local dataset to minimize the following loss function.

min
q̂ (m)

`(y, ỹ)
��
ỹ= f (m)(x), (19.16)

where ` is the pointwise cross-entropy loss, f (m)(·) = f (m)
L (·)� · · · f (m)

l (·) · · ·� f (m)
1 (·)

and L is the number of total layers. After training the device specific parameter q̂ (m)

by Eq. 19.16, we can use Eq. 19.15 to generate all patches, and then insert them
into the cloud GNN model f via Eq. 19.14 to get the final personalized GNN model
f (m), which will provide the on-device personalized recommendation.

19.3.1.2 MoMoDistill to Enhance the Cloud Modeling

The conventional incremental training of the centralized cloud model follows the
“model-over-data” paradigm. That is, when the new training samples are collected
from devices, we directly perform the incremental learning based on the model
trained in the early sample collection. The objective is formulated as follows,

min
Wf

`(y, ŷ)
��
ŷ= f (x), (19.17)

where Wf is the network parameter of the cloud GNN model f to be trained. This is
an independent perspective without considering the device modeling. However, the
on-device personalization actually can be more powerful than the centralized cloud
model to handle the corresponding local samples. Thus, the guidance from the on-
device models could be a meaningful prior to help the cloud modeling. Inspired
by this, we propose a “model-over-models” paradigm to simultaneously learn from
data and aggregate the knowledge from on-device models, to enhance the training of
the centralized cloud model. Formally, the objective with the distillation procedure

19 Graph Neural Networks in Modern Recommender Systems 441

on the samples from all devices is defined as,

min
Wf

`(y, ŷ)+b KL(ỹ, ŷ)
��
ŷ= f (x),ỹ= f (m)(x), (19.18)

where b is the hyperparameter to balance the distillation and “model-over-data”
learning. Note that, the feasibility of the distillation in Eq. 19.18 critically depends
on the patch mechanism in the previous section, since it allows us to input the meta-
patch parameters like features with only loading the other parameters of f (m) in one
time. Otherwise, we will suffer from the engineering issue of reloading numerous
checkpoints frequently, which is almost impossible for current frameworks.

In MetaPatch, we introduce the global parameter basis {Ql} (simplified by Q) to
reduce the parameter space on the device. Regarding its training, we empirically find
that coupled learning with Wf easily falls into undesirable local optimal, since they
play different roles in terms of their semantics. Therefore, we resort to a progressive
optimization strategy, that is, first optimize f based on Eq. 19.18, and then distill the
knowledge for the parameter basis Q with the learned f . For the second step, we de-
sign an auxiliary component by considering the heterogeneous characteristics of the
metapatches from all devices and the cold-start issue at the beginning. Concretely,
given the dataset {(x,y,u(I(x)), q̂ (I(x)))}n=1,...,N , where I maps the sample index to
the device index and u ⇢ x is the user profile features (e.g., age, gender, purchase
level, etc) of the corresponding device, we define the following auxiliary encoder,

U(q̂ ,u) = W (1)tanh(W (2)q̂ +W (3)u), (19.19)

where W (1), W (2), W (3) are tunable projection matrices. Here, we use We denoting
the collection {W (1),W (2),W (3)} for simplicity. To learn the global parameter basis,
we replace q̂ by U(q̂ ,u) to simulate Eq. 19.15 to generate the model patch, i.e., Q ⇤
U(q̂ ,u), since actually q̂ is too heterogeneous to be directly used. Then, combining
Q ⇤U(q̂ ,u) with f learned in the first distillation step, we can form a new proxy
device model f̂ (m) (different from f (m) in the patch generation). Here, we leverage
such a proxy f̂ (m) to directly distill the knowledge from the true f (m) collected from
devices, which optimizes Q and the parameters of the auxiliary encoder,

min
(Q , We)

`(y, ŷ)+b KL(ỹ, ŷ)
��
ŷ= f̂ (m)(x),ỹ= f (m)(x), (19.20)

Eq. 19.18 and Eq. 19.20 progressively help learn the centralized cloud model and the
global parameter basis. We specially term this progressive distillation mechanism as
MoMoDistill to emphasize our “model-over-models” paradigm different from the
conventional “model-over-data” incremental training on the cloud side. Finally, in
Algorithm 3, we summarize the complete procedure of DCCL.

442 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

Algorithm 3 Device-Cloud Collaborative Learning for GNNs
Pretrain the cloud GNN model f , and then learn the global parameter basis Q based on Eq. 19.20
by setting q̂ as 0.

while lifecycle do Send f and Q to devices.
Device(f , Q): B MetaPatch
1) Accumulate the local data into batches
2) On-device personalization via Eq.19.16
3) If time > threshold: upload personalized GNN model f (m)

4) Else: return the step 1).
Recycle all model patches {q̂ (m)}.
Cloud({q̂ (m)}): B MoMoDistill
1) Optimize the cloud GNN model f based on Eq.19.18
2) Learn the parameter basis Q by Eq.19.20

19.3.2 Experiments and Discussions

To demonstrate the effectiveness of the proposed framework, we conduct a range
of experiments on three recommendation datasets Amazon, Movielens-1M and
Taobao. Generally, all these three datasets are user interactive history in sequence
format, and the last user interacted item is cut out as test sample. For each last in-
teracted item, we randomly sample 100 items that do not appear in the user history.
We compare our framework with some classical cloud models, namely, the conven-
tional methods MF (Koren et al, 2009) and FM (Rendle, 2010), deep learning-based
methods NeuMF (He et al, 2017b) and DeepFM (Guo et al, 2017), and sequence-
based methods SASRec (Kang and McAuley, 2018) and DIN (Zhou et al, 2018b).
For the whole experiments, we implement our model on the basis of DIN, where
we insert the model patches in the last second fully-connected layer and the first
two fully-connected layers after the feature embedding layer. In all comparisons,
we term MetaPatch as DCCL-e, and MoMoDistill as DCCL-m, since the whole
framework resembles EM iterations. The default method to compare the baselines
is named DCCL, which indicates that it goes through both on-device personaliza-
tion and the “model-over-models” distillation. The performance are measured by
HitRate, NDCG and macro-AUC.

19.3.2.1 How is the performance of DCCL compared with the SOTAs?

To demonstrate the effectiveness of DCCL, we conduct the experiments on Ama-
zon, Movielens and Taobao to compare to a range of baselines. Aligned with the
popular experimental settings (He et al, 2017b; Zhou et al, 2018b), the last inter-
active item of each user on three datasets is left for evaluation and all items before
the last one are used for training. For DCCL, we split the training data into two
parts on average according to the temporal order: one part is for the pretraining

19 Graph Neural Networks in Modern Recommender Systems 443

of the backbone (DIN) and the other part is for the training of DCCL. In the ex-
periments, we conduct one-round DCCL-e and DCCL-m. Finally, the DCCL-m is
used to compare with the six representative models. We find that the deep learning
based methods NeuMF and DeepFM usually outperform the conventional methods
MF and FM, and the sequence-based methods SASRec and DIN consistently out-
perform previous non-sequence-based methods. Our DCCL builds upon on the best
baseline DIN and further improves its results. Specifically, DCCL shows about 2%
or more improvements in terms of NDCG@10, and at least 1% improvements in
terms of HitRate@10 on all three datasets. The performances on both small and
large datasets confirm the superiority of our DCCL.

19.3.2.2 Whether on-device personalization benefits to the cloud model?

In this section, we target to demonstrate that how on-device personalization via
MetaPatch (abbreviated as DCCl-e) can improve the recommendation performance
from different levels of users compared with the centralized cloud model. Consid-
ering the data scale and the availability of the context information for visualization,
only the Taobao dataset is used to conduct this experiment. To validate the per-
formance of DCCL-e in the fine-grained granularity, we sort the users based on
their sample numbers and then partition them into 20 groups on average along the
sorted user axis (see the statistic of the sample number w.r.t. the user in the ap-
pendix). After on-device model personalization, we calculate the performance for
each group based on the personalized models. Here, the macro-AUC metric is used,
which equally treats the users in the group instead of the group AUC in (Zhou et al,
2018b).

We use DIN as baseline and pretrain it on the Taobao Dataset of the first 20
days. Then, we test the model in the data of the remaining 10 days. For DCCL-e,
we first pretrain DIN on the Taobao Dataset of the first 10 days, and then insert
the patches into the pretrained DIN same as previous settings. Finally, we perform
the on-device personalization in the subsequent 10 days. Similarly, we test DCCL-e
on the data of the last 10 days. The evaluation is respectively conducted in the 20
groups. According to the results, we find that with the increase of the group index
number, the performance approximately decreases. This is because the users in the
group of larger indices are more like the long-tailed users based on our partition, and
their patterns are easily ignored or even sacrificed by the centralized cloud model.
In comparison, DCCL-e shows the consistent improvement over DIN on all groups,
and especially can achieve a large improvement in long-tailed user groups.

19.3.2.3 The iterative characteristics of the multi-round DCCL.

To illustrate the convergence property of DCCL, we conduct the experiments on the
Taobao dataset in different device-cloud interaction temporal intervals. Concretely,
we specify every 2, 5, 10 days interactions between device and cloud, and respec-

444 Yunfei Chu, Jiangchao Yao, Chang Zhou and Hongxia Yang

tively trace the performance of each round evaluated on the last click of each user.
According to the results, we observe that frequent interactions achieve much better
performance than the infrequent counterparts. We speculate that, as MeatPatch and
MoMoDistill could promote each other at every round, the advantages in perfor-
mance have been continuously strengthened with more frequent interactions. How-
ever, the side effect is we have to frequently update the on-device models, which
may introduce other uncertain crash risks. Thus, in the real-world scenarios, we
need to make a trade-off between performance and the interaction interval.

19.3.2.4 Ablation Study of DCCL

For the first study, we given the results of the one-round DCCL on the Taobao
dataset and compare with DIN. From the results, we can observe the progressive
improvement after DCCL-e and DCCL-m, and DCCL-m acquires more benefit than
DCCL-e in terms of the improvement. The revenue behind DCCL-e is MetaPatch
customizes a personalized model for each user to improve their recommendation ex-
perience once new behavior logs are collected on device, without the delayed update
from the centralized cloud server. The further improvements from DCCL-m confirm
the necessity of MoMoDistill to re-calibrate the backbone and the parameter basis
in a long term. However, if we conduct the experiments without our two modules,
the model performance is as DIN, which is not better than DCCL.

For the second ablation study, we explore the effect of the model patches in dif-
ferent layer junctions. In previous sections, we insert two patches (1st Junction, 2nd
Junction) in the two fully-connected layers respectively after the feature embedding
layer, and one patch (3rd Junction) to the layer before the last softmax transforma-
tion layer. In this experiment, we validate their effectiveness by only keep each of
them in one-round DCCL. Compared with the full model, we can find that removing
the model patch would decrease the performance. The results suggest the patches in
the 1st and 2nd junctions are more effective than the one in the 3rd junction.

19.4 Future Directions

Certainly, we have witnessed the arising trends for GNNs to be applied in various
areas. We believe the following directions should be paid more attention for GNNs
to have wider impacts in big data areas, especially in search, recommendation or
advertisement.

• There is still a lot to understand about GNNs, but there were quite a few im-
portant results about how they work (Loukas, 2020; Xu et al, 2019d; Oono and
Suzuki, 2020). Future research works of GNNs should balance between techni-
cal simplicity, high practical impact, and far-reaching theoretical insights.

• It is also great to see how GNNs can be applied for other real-world tasks (Wei
et al, 2019; Wang et al, 2019a; Paliwal et al, 2020; Shi et al, 2019a; Jiang and

19 Graph Neural Networks in Modern Recommender Systems 445

Balaprakash, 2020; Chen et al, 2020o). For example, we see applications in fix-
ing bugs in Javascript, game playing, answering IQ-like tests, optimization of
TensorFlow computational graphs, molecule generation, and question genera-
tion in dialogue systems, among many others.

• It will become popular to see GNNs applied for knowledge graph reasoning
(Ren et al, 2020; Ye et al, 2019b). A knowledge graph is a structured way to
represent facts where nodes and edges actually bear some semantic meaning,
such as the name of the actor or act of playing in movies.

• Recently there are new perspectives on how we should approach learning graph
representations, especially considering the balance between local and global
information. For example, Deng et al (2020) presents a way to improve run-
ning time and accuracy in node classification problem for any unsupervised
embedding method. Chen et al (2019c) shows that if one replaces a non-linear
neighborhood aggregation function with its linear counterpart, which includes
degrees of the neighbors and the propagated graph attributes, then the perfor-
mance of the model does not decrease. This is aligned with previous statements
that many graph data sets are trivial for classification and raises a question of
the proper validation framework for this task.

• Algorithmic works of GNNs should be integrated with system design more
closely, to empower end-to-end solutions for users to address their scenarios
by taking graph into deep learning frameworks. It should allow pluggable oper-
ators to adapt to the fast development of GNN community and excels in graph
building and sampling. As an independent and portable system, the interfaces
of AliGraph (Zhu et al, 2019c) can be integrated with any tensor engine that is
used for expressing neural network models. By co-designing the flexible Grem-
lin like interfaces for both graph query and sampling, users can customize data
accessing pattern freely. Moreover, AliGraph also shows excellent performance
and scalability.

Editor’s Notes: Recommender system is one of the hottest topics in both
research and industrial communities due to its huge value in a number of
commercial businesses such as Amazon, Facebook, LinkedIn, and so on.
Since user-item interactions, user-user interaction and item-item similarity
can naturally formulate into graph structure data, various graph represen-
tation learning techniques (GNN Methods in Chapter 4, GNN Scalability
in Chapter 6, Graph Structure Learning in Chapter 14, Dynamic GNNs in
Chapter 15, and Heterogeneous GNNs in Chapter 16) can serve a strong set
of algorithmic foundations in applying GNNs for developing an effective
and efficient modern recommendation system.

