
Chapter 18
Graph Neural Networks: Self-supervised
Learning

Yu Wang, Wei Jin, and Tyler Derr

Abstract Although deep learning has achieved state-of-the-art performance across
numerous domains, these models generally require large annotated datasets to reach
their full potential and avoid overfitting. However, obtaining such datasets can have
high associated costs or even be impossible to procure. Self-supervised learning
(SSL) seeks to create and utilize specific pretext tasks on unlabeled data to aid in
alleviating this fundamental limitation of deep learning models. Although initially
applied in the image and text domains, recent interest has been in leveraging SSL
in the graph domain to improve the performance of graph neural networks (GNNs).
For node-level tasks, GNNs can inherently incorporate unlabeled node data through
the neighborhood aggregation unlike in the image or text domains; but they can
still benefit by applying novel pretext tasks to encode richer information and nu-
merous such methods have recently been developed. For GNNs solving graph-level
tasks, applying SSL methods is more aligned with other traditional domains, but still
presents unique challenges and has been the focus of a few works. In this chapter,
we summarize recent developments in applying SSL to GNNs categorizing them
via the different training strategies and types of data used to construct their pretext
tasks, and finally discuss open challenges for future directions.

Yu Wang
Department of Electrical Engineering and Computer Science, Vanderbilt University, e-mail:
yu.wang.1@vanderbilt.edu

Wei Jin
Department of Computer Science and Engineering, Michigan State University, e-mail: jinwei2@
msu.edu

Tyler Derr
Department of Electrical Engineering and Computer Science, Vanderbilt University, e-mail:
tyler.derr@vanderbilt.edu

391

yu.wang.1@vanderbilt.edu
jinwei2@msu.edu
jinwei2@msu.edu
tyler.derr@vanderbilt.edu

392 Yu Wang, Wei Jin, and Tyler Derr

18.1 Introduction

Recent years have witnessed the great success of applying deep learning in numer-
ous fields. However, the superior performance of deep learning heavily depends
on the quality of the supervision provided by the labeled data and collecting a
large amount of high-quality labeled data tends to be time-intensive and resource-
expensive (Hu et al, 2020c; Zitnik and Leskovec, 2017). Therefore, to alleviate the
demand for massive labeled data and provide sufficient supervision, self-supervised
learning (SSL) has been introduced. Specifically, SSL designs domain-specific pre-
text tasks that leverage extra supervision from unlabeled data to train deep learning
models and learn better representations for downstream tasks. In computer vision,
various pretext tasks have been studied, e.g., predicting relative locations of image
patches (Noroozi and Favaro, 2016) and identifying augmented images generated
from image processing techniques such as cropping, rotating and resizing (Shorten
and Khoshgoftaar, 2019). In natural language processing, self-supervised learning
has also been heavily utilized, e.g., predicting the masked word in BERT (Devlin
et al, 2019).

Simultaneously, graph representation learning has emerged as a powerful strat-
egy for analyzing graph-structured data over the past few years (Hamilton, 2020).
As the generalization of deep learning to the graph domain, Graph Neural Networks
(GNNs) has become one promising paradigm due to their efficiency and strong per-
formance in real-world applications (You et al, 2021; Zitnik and Leskovec, 2017).
However, the vanilla GNN model (i.e., Graph Convolutional Network (Kipf and
Welling, 2017b)) and even more advanced existing GNNs (Hamilton et al, 2017b;
Xu et al, 2019d, 2018a) are mostly established in a semi-supervised or supervised
manner, which still requires high-cost label annotation. Additionally, these GNN
models may not take full advantage of the abundant information in unlabeled data,
such as the graph topology and node attributes. Hence, SSL can be naturally har-
nessed for GNNs to gain additional supervision and thoroughly exploit the informa-
tion in the unlabeled data.

Compared with grid-based data such as images or text (Zhang et al, 2020e),
graph-structured data is far more complex due to its highly irregular topology,
involved intrinsic interactions and abundant domain-specific semantics (Wu et al,
2021d). Different from images and text where the entire structure represents a single
entity or expresses a single semantic meaning, each node in the graph is an individ-
ual instance with its own features and positioned in its own local context. Further-
more, these individual instances are inherently related with each other, which forms
diverse local structures that encode even more complex information to be discovered
and analyzed. While such complexity engenders tremendous challenges in analyz-
ing graph-structured data, the substantial and diverse information contained in the
node features, node labels, local/global graph structures, and their interactions and
combinations provide golden opportunities to design self-supervised pretext tasks.

Embracing the challenges and opportunities to study self-supervised learning
in GNNs, the works (Hu et al, 2020c, 2019c; Jin et al, 2020d; You et al, 2020c)
have been the first research that systematically design and compare different self-

18 Graph Neural Networks: Self-supervised Learning 393

supervised pretext tasks in GNNs. For example, the works (Hu et al, 2019c; You
et al, 2020c) design pretext tasks to encode the topological properties of a node
such as centrality, clustering coefficient, and its graph partitioning assignment, or
to encode the attributes of a node such as individual features and clustering assign-
ments in embeddings output by GNNs. The work (Jin et al, 2020d) designs pretext
tasks to align the pairwise feature similarity or the topological distance between
two nodes in the graph with the closeness of two nodes in the embedding space.
Apart from the supervision information employed in creating pretext tasks, design-
ing effective training strategies and selecting reasonable loss functions are another
crucial components in incorporating SSL into GNNs. Two frequently used training
strategies that equip GNNs with SSL are 1) pre-training GNNs through complet-
ing pretext task(s) and then fine-tuning the GNNs on downstream task(s), and 2)
jointly training GNNs on both pretext and downstream tasks (Jin et al, 2020d; You
et al, 2020c). There are also few works (Chen et al, 2020c; Sun et al, 2020c) ap-
plying the idea of self-training in incorporating SSL into GNNs. In addition, loss
functions are selected to be tailored for purposes of specific pretext tasks, which in-
cludes classification-based tasks (cross-entropy loss), regression-based tasks (mean
squared error loss) and contrastive-based tasks (contrastive loss).

In view of the substantial progress made in the field of graph neural networks
and the significant potential of self-supervised learning, this chapter aims to present
a systematic and comprehensive review on applying self-supervised learning into
graph neural networks. The rest of the chapter is organized as follows. Section 18.2
first introduces self-supervised learning and pretext tasks, and then summarizes fre-
quently used self-supervised methods from the image and text domains. In Sec-
tion 18.3, we introduce the training strategies that are used to incorporate SSL
into GNNs and categorize the pretext tasks that have been developed for GNNs.
Section 18.4 and 18.5 present detailed summaries of numerous representative SSL
methods that have been developed for node-level and graph-level pretext tasks.
Thereafter, in Section 18.6 we discuss representative SSL methods that are devel-
oped using both node-level and graph-level supervision, which we refer to as node-
graph-level pretext tasks. Section 18.7 collects and reinforces the major results and
the insightful discoveries in prior sections. Concluding remarks and future forecasts
on the development of SSL in GNNs are provided in Section 18.8.

18.2 Self-supervised Learning

Supervised learning is the machine learning task of training a model that maps an
input to an output based on the ground-truth input-output pairs provided by a la-
beled dataset. Good performance of supervised learning requires a decent amount
of labeled data (especially when using deep learning models), which are expen-
sive to manually collect. Conversely, self-supervised learning generates supervisory
signals from unlabeled data and then trains the model based on the generated super-
visory signals. The task used for training the model based on the generative signal is

394 Yu Wang, Wei Jin, and Tyler Derr

referred to as the pretext task. In comparison, the task whose ultimate performance
we care about the most and expect our model to solve is referred to as the down-
stream task. To guarantee the performance benefits from self-supervised learning,
pretext tasks should be carefully designed such that completing them encourages
the model to have the similar or complementary understanding as completing down-
stream tasks. Self-supervised learning initially originated to solve tasks in image and
text domains. The following part focuses on introducing self-supervised learning in
these two fields with the specific emphasis on different pretext tasks.

In computer vision (CV), many ideas have been proposed for self-supervised rep-
resentation learning on image data. A common example is that we expect that small
distortion on an image does not affect its original semantic meaning or geometric
forms. The idea to create surrogate training datasets with unlabeled image patches
by first sampling patches from different images at varying positions and then distort-
ing patches by applying a variety of random transformations are proposed in (Doso-
vitskiy et al, 2014). The pretext task is to discriminate between patches distorted
from the same image or from different images. Rotation of an entire image is an-
other effective and inexpensive way to modify an input image without changing
semantic content (Gidaris et al, 2018). Each input image is first rotated by a mul-
tiple of 90 degrees at random. The model is then trained to predict which rotation
has been applied. However, instead of performing pretext tasks on an entire image,
the local patches could also be extracted to construct the pretext tasks. Examples of
methods using this technique include predicting the relative position between two
random patches from one image (Doersch et al, 2015) and designing a jigsaw puz-
zle game to place nine shuffled patches back to the original locations (Noroozi and
Favaro, 2016). More pretext tasks such as colorization, autoencoder, and contrastive
predictive coding have also been introduced and effectively utilized (Oord et al,
2018; Vincent et al, 2008; Zhang et al, 2016d).

While computer vision has achieved amazing progress on self-supervised learn-
ing in recent years, self-supervised learning has been heavily utilized in natural lan-
guage processing (NLP) research for quite a while. Word2vec (Mikolov et al, 2013b)
is the first work that popularized the SSL ideas in the NLP field. Center word pre-
diction and neighbor word prediction are two pretext tasks in Word2vec where the
model is given a small chunk of the text and asked to predict the center word in that
text or vice versa. BERT (Devlin et al, 2019) is another famous pre-trained model
in NLP where two pretest tasks are to recover randomly masked words in a text or
to classify whether two sentences can come one after another or not. Similar works
have also been introduced, such as having the pretext task classify whether a pair
of sentences are in the correct order (Lan et al, 2020), or a pretext task that first
randomly shuffles the ordering of sentences and then seeks to recover the original
ordering (Lewis et al, 2020).

Compared with the difficulty of data acquisition encountered in image and text
domains, machine learning in the graph domain faces even more challenges in ac-
quiring high-quality labeled data. For example, for molecular graphs it can be ex-
tremely expensive to perform the necessary laboratory experiments to label some
molecules (Rong et al, 2020a), and in a social network obtaining ground-truth labels

18 Graph Neural Networks: Self-supervised Learning 395

for individual users may require large-scale surveys or be unable to be released due
to privacy agreements/concerns (Chen et al, 2020a). Therefore, the success achieved
by applying SSL in CV and NLP naturally leads the question as to whether SSL
can be effectively applied in the graph domain. Given that graph neural network is
among the most powerful paradigms for graph representation learning, in follow-
ing sections we will mainly focus on introducing self-supervised learning within
the framework of graph neural networks and highlighting/summarizing these recent
advancements.

18.3 Applying SSL to Graph Neural Networks: Categorizing
Training Strategies, Loss Functions and Pretext Tasks

When seeking to apply self-supervised learning to GNNs, the major decisions to
be made are how to construct the pretext tasks, which includes what information to
leverage from the unlabeled data, what loss function to use, and what training strat-
egy to use for effectively improving the GNN’s performance. Hence, in this section
we will first mathematically formalize the graph neural network with self-supervised
learning and then discuss each of the above. More specifically, we will introduce
three training strategies, three loss functions that are frequently employed in the cur-
rent literature, and categorize current state-of-the-art pretext tasks for GNNs based
on the type of information they leverage for constructing the pretext task.

Given an undirected attributed graph G = {V ,E ,X}, where V = {v1, ...,v|V |}
represents the vertex set with |V | vertices, E represents the edge set and ei j = (vi,v j)
is an edge between node vi and v j, X 2 R|V |⇥d represents the feature matrix and
xi = X [i, :]> 2 Rd is the d-dimensional feature vector of the node vi. A 2 R|V |⇥|V |

is the adjacency matrix where Ai j = 1 if ei j 2 E and Ai j = 0 if ei j /2 E . We denote
any GNN-based feature extractor as fq : R|V |⇥d ⇥R|V |⇥|V | !R|V |⇥d0 parametrized
by q , which takes any node feature matrix X and the graph adjacency matrix A
and outputs the d0-dimensional representation for each node ZGNN = fq (X ,A) 2
R|V |⇥d0 , which is further fed into any permutation invariant function READOUT :
R|V |⇥d0 ! Rd0 to obtain the graph embeddings zGNN,G = READOUT(fq (X ,A)) 2
Rd0 . More specifically, we note that here q represents the parameters encoded in
the corresponding network architectures of the GNN (Hamilton et al, 2017b; Kipf
and Welling, 2017b; Petar et al, 2018; Xu et al, 2019d, 2018a). Considering the
transductive semi-supervised tasks where we are provided with the labeled node
set Vl ⇢ V , the labeled graph G , the associated node label matrix Ysup 2 R|Vl |⇥l ,
and the graph label ysup,G 2Rl with label dimension l, we aim to classify nodes and
graphs. The node and graph representations output by GNNs are firstly processed by
the extra adaptation layer hqsup parametrized by the supervised adaptation parameter
qsup to obtain the predicted l-dimensional node label Zsup 2 R|V |⇥l and graph label
zsup,G 2 Rl by Eq. equation 18.1-equation 18.2. Then the model parameters q in
GNN-based extractor fq and the parameters qsup in adaptation layer hqsup are learned

396 Yu Wang, Wei Jin, and Tyler Derr

by optimizing the supervised loss calculated between the output/predicted label and
the true label for labeled nodes and the labeled graph, which can be formulated as:

Zsup = hqsup(fq (X ,A)) (18.1)

zsup,G = hqsup(READOUT(fq (X ,A))) (18.2)

q ⇤,q ⇤
sup = arg min

q ,qsup
Lsup(q ,qsup) =

8
>>>>>><

>>>>>>:

arg min
q ,qsup

1
|Vl | Â

vi2Vl

`sup(zsup,i,ysup,i)

| {z }
Node supervised task

arg min
q ,qsup

`sup(zsup,G ,ysup,G)

| {z }
Graph supervised task

, (18.3)

where Lsup is the total supervised loss function and `sup is the supervised loss
function for each example, ysup,i = Ysup[i, :]> indicates the true label for node vi
in node supervised task and ysup,G indicates the true label for graph G in graph
supervised task. Their corresponding predicted label distributions are denoted as
zsup,i = Zsup[i, :]> and zsup,G . q ,qsup are parameters to be optimized for any GNN
model and the extra adaptation layer for the supervised downstream task, respec-
tively. Note that for ease of notation, we assume the above graph supervised task
is operated only on one graph but the above framework can be easily adapted to
supervised tasks on multiple graphs.

18.3.1 Training Strategies

In this chapter, we view SSL as the process of designing a specific pretext task and
learning the model on the pretext task. In this sense, SSL can either be used as
unsupervised pre-training or be integrated with semi-supervised learning.

The model capability of extracting features for completing pretext and down-
stream tasks is improved through optimizing the model parameters q ,qssl, and qsup,
where qssl denotes the parameters of the adaptation layer for the pretext task. In-
spired by relevant discussions (Hu et al, 2019c; Jin et al, 2020d; Sun et al, 2020c;
You et al, 2020b,c), we summarize three possible training strategies that are pop-
ular in the literature to train GNNs in the self-supervised setting as self-training,
pre-training with fine-tuning, and joint training.

18 Graph Neural Networks: Self-supervised Learning 397

18.3.1.1 Self-training

Self-training is a strategy that leverages the supervision information in the train-
ing process generated by the model itself (Li et al, 2018b; Riloff, 1996). A typical
self-training pipeline begins with first training the model over the labeled data, then
generating pseudo labels to unlabeled samples that have highly confident predic-
tions, and including them into the labeled data in the next round of training. In this
way, the pretext task is the same as the downstream task by utilizing the pseudo
labels for some of the originally unlabeled data. A detailed overview is presented in
Fig. 18.1 where the prediction results are re-utilized to augment the training data in
the next iteration as done in (Sun et al, 2020c).

Fig. 18.1: An overview of GNNs with SSL using self-training.

18.3.1.2 Pre-training and Fine-tuning

A common strategy to utilize features learned from completing pretext tasks in-
cludes applying the optimized parameters from self-supervision as initialization for
fine-tuning in downstream tasks. This strategy consists of two stages: pre-training
on the self-supervised pretext tasks and fine-tuning on the downstream tasks. The
overview of this two-stage optimization strategy is given in Fig. 18.2.

The whole model consists of one shared GNN-based feature extractor and two
adaptation modules, one for the pretext task and one for the downstream task. In the
pre-training process, the model is trained with the self-supervised pretext task(s) as:

Zssl = hqssl(fq (X ,A)), (18.4)

zssl,G = hqssl(READOUT(fq (X ,A))), (18.5)

398 Yu Wang, Wei Jin, and Tyler Derr

q ⇤,q ⇤
ssl = argmin

q ,qssl
Lssl(q ,qssl) =

8
>>>>>><

>>>>>>:

arg min
q ,qssl

1
|V | Â

vi2V

`ssl(zssl,i,yssl,i)

| {z }
Node pretext tasks

arg min
q ,qssl

`ssl(zssl,G ,yssl,G)

| {z }
Graph pretext tasks

, (18.6)

where qssl denotes the parameters of the adaptation layer hqssl for the pretext
tasks, `ssl is the self-supervised loss function for each example, and Lssl is the
total loss function of completing the self-supervised task. In node pretext tasks,
zssl,i = Zssl[i, :]> and yssl,i = Yssl[i, :]>, which are the self-supervised predicted and
true label(s) for the node vi, respectively. In graph pretext tasks, zssl,G and yssl,G are
the self-supervised predicted and true label(s) for the graph G , respectively. Then, in
the fine-tuning process, the feature extractor fq is trained by completing downstream
tasks in Eq. equation 18.1-equation 18.3 with the pre-trained q ⇤ as the initialization.
Note that to utilize the pre-trained node/graph representations the fine-tuning pro-
cess can also be replaced by training a linear classifier (e.g., Logistic Regression
(Peng et al, 2020; Veličković et al, 2019; You et al, 2020b; Zhu et al, 2020c)).

Fig. 18.2: An overview of GNNs with SSL using pre-training and fine-tuning.

18.3.1.3 Joint Training

Another natural idea to harness self-supervised learning for graph neural networks is
to combine losses of completing pretext task(s) and downstream task(s) and jointly
train the model. The overview of the joint training is shown in Fig. 18.3.

The joint training consists of two components: feature extraction by a GNN and
adaption processes for both the pretext tasks and downstream tasks. In the feature
extraction process, a GNN takes the graph adjacency matrix A and the feature ma-

18 Graph Neural Networks: Self-supervised Learning 399

trix X as input and outputs the node embeddings ZGNN and/or graph embeddings
zGNN,G . In the adaptation procedure, the extracted node and graph embeddings are
further transformed to complete pretext and downstream tasks via hqssl and hqsup ,
respectively. We then jointly optimize the pretext and downstream task losses as:

Zsup = hqsup(fq (X ,A)), Zssl = hqssl(fq (X ,A)), (18.7)

zsup,G = hqsup(READOUT(fq (X ,A))), zssl,G = hqssl(READOUT(fq (X ,A))),
(18.8)

q ⇤,q ⇤
sup,q ⇤

ssl =

8
>>>>>><

>>>>>>:

arg min
q ,qsup,qssl

1
|V | Â

vi2V

(a1`sup(zsup,i,ysup,i)+a2`ssl(zssl,i,yssl,i))

| {z }
Node pretext tasks

arg min
q ,qsup,qssl

a1`sup(zsup,G ,ysup,G)+a2`ssl(zssl,G ,yssl,G)

| {z }
Graph pretext tasks

,

(18.9)
where a1,a2 2R> 0 are the weights for combining the supervised loss `sup and the
self-supervised loss `ssl.

Fig. 18.3: An overview of GNNs with SSL using joint training.

18.3.2 Loss Functions

A loss function is used to evaluate the performance of how well the algorithm mod-
els the data. Generally, in GNNs with self-supervised learning, the loss function for
the pretext task has three forms, which are classification loss, regression loss and
contrastive learning loss. Note that the loss functions we discuss here are only for
the pretext tasks rather than downstream tasks.

400 Yu Wang, Wei Jin, and Tyler Derr

18.3.2.1 Classification and Regression Loss

In completing classification-based pretext tasks such as node clustering where node
embeddings are expected to encode the assignment information of the clusters, the
objective for the pretext is to minimize the following loss function:

Lssl =

8
>>>>><

>>>>>:

1
|V | Â

vi2V

`CE(zssl,i,yssl,i)

| {z }
Node pretext tasks

= � 1
|V | Âvi2V ÂL

j=11(yssl,i j = 1) log(z̃ssl,i j)

`CE(zssl,G ,yssl,G)
| {z }

Graph pretext tasks

= �ÂL
j=11(yssl,G j = 1) log(z̃ssl,G j)

,

(18.10)
where `CE indicates the cross entropy function, zssl,i and zssl,G represents the pre-
dicted label distribution of node vi and graph G for the pretext task, and their cor-
responding class probability distribution z̃ssl,i and z̃ssl,G are calculated by softmax
normalization, respectively. For example, z̃ssl,i j is the probability of node vi belong-
ing to class j. Since every node vi has its own pseudo label (i.e., yssl,i) in completing
pretext tasks, we can consider all the nodes V in the graph compared to only the
labeled set of nodes Vl as before in downstream tasks.

In completing regression-based pretext tasks, such as feature completion, the
mean squared error loss is typically used as the loss function:

Lssl =

8
>>>>><

>>>>>:

1
|V | Â

vi2V

`MSE(zssl,i,yssl,i)

| {z }
Node pretext tasks

= 1
|V | Âvi2V ||zssl,i �yssl,i||2

`MSE(zssl,G ,yssl,G)
| {z }

Graph pretext tasks

= ||zssl,G �yssl,G ||2
, (18.11)

where the objective is minimizing the distance from our learned embedding to yssl,i
which represents any ground-truth value of node vi, such as the original attribute in
the feature completion or other values of node vi.

18.3.2.2 Contrastive Learning Loss

Inspired by the significant progress achieved by employing the contrastive learning
in natural language processing and computer vision (Le-Khac et al, 2020), recent
studies (Hassani and Khasahmadi, 2020; Veličković et al, 2019; You et al, 2020b;
Zhu et al, 2020c, 2021) propose similar contrastive frameworks to enable SSL in
GNNs. The general goal of contrastive learning in GNNs is to train GNN-based en-
coders such that the agreement of representations between similar graph instances
(e.g., multiple views generated from the same instance) is maximized while the
agreement between dissimilar graph instances (e.g., multiple views generated from
different instances) is minimized. Such maximization and minimization of agree-

18 Graph Neural Networks: Self-supervised Learning 401

Fig. 18.4: An overview of GNNs with SSL using contrastive learning.

ments between different views of instances is typically formalized as maximizing
the mutual information I (Z1

ssl,Z
2
ssl) between representations Z1

ssl and Z2
ssl under two

different views as:
max
q ,qssl

I (Z1
ssl,Z

2
ssl), (18.12)

where Z1
ssl,Z

2
ssl correspond to representations output from any GNN-based encoder

followed by an adaptation layer hqssl under two different graph views G 1,G 2.
In order to computationally estimate and maximize the mutual information that

is originally intractable to be exactly computed in most cases (Belghazi et al, 2018;
Gabrié et al, 2019; Paninski, 2003; Xie et al, 2021), multiple estimators to eval-
uate the lower bounds to the mutual information are derived, including normal-
ized temperature-scaled cross-entropy (NT-Xent) (Chen et al, 2020l), Donsker-
Varadhan representation of the KL-divergence (Donsker and Varadhan, 1976),
noise-contrastive estimation (InfoNCE) gutmann2010noise, Jensen-Shannon esti-
mator (Nowozin et al, 2016). For simplicity, here we only present one frequently
used mutual information estimator NT-Xent, which is formalized as:

Lssl =
1

|P+| Â
(i, j)2P+

`NT-Xent(Z1
ssl,Z

2
ssl,P

�)

= � 1
|P+| Â

(i, j)2P+

log
exp(D(z1

ssl,i,z2
ssl, j))

Â
k2{ j[P�

i }
exp(D(z1

ssl,i,z2
ssl,k))

(18.13)

where D(z1
ssl,i,z2

ssl, j)) =
sim(z1

ssl,i,z
2
ssl, j)

t is a learnable discriminator parametrized with
the similarity function (i.e., cosine similarity) and the temperature factor t , P+

represents the set of all pairs of positive samples while P� =
S

(i, j)2P+ P�
i repre-

sents all sets of negative samples. Especially P�
i contains all negative samples of

the sample i. Note that we can contrast both node representations, graph represen-
tations and node-graph representations under different views. Therefore, z1

ssl is not
limited to the node embeddings, but could refer to the embeddings of both node and

402 Yu Wang, Wei Jin, and Tyler Derr

graph under the first graph view G 1. Thus, i, j,k could refer to both node and graph
samples.

Fig. 18.5: A categorization of pretext tasks in self-supervised learning.1

18.3.3 Pretext Tasks

Pretext tasks are constructed by leveraging different types of supervision informa-
tion coming from different components of graphs. Based on the components that
generate the supervision information, pretext tasks that are prevalent in the litera-
ture are categorized into node-level, graph-level and node-graph level. In completing
node-level and graph-level pretext tasks, three types of information can be lever-
aged: graph structure, node features, or hybrid, where the latter combines the infor-

1 Additional summary details and the corresponding code links for these methods can be found at
https://github.com/NDS-VU/GNN-SSL-Chapter.

https://github.com/NDS-VU/GNN-SSL-chapter

18 Graph Neural Networks: Self-supervised Learning 403

mation from node features, graph structure, and even information from the known
training labels (as presented in (Jin et al, 2020d)). We summarize the categorization
of pretext tasks as a tree where each leaf node represents a specific type of pretext
tasks in Fig. 18.5 while also including the corresponding references. In the next
three sections, we give detailed explanations about each of these pretext tasks and
summarize the majority of existing methods.

18.4 Node-level SSL Pretext Tasks

For node-level pretext tasks, methods have been developed to use easily-accessible
data to generate pseudo labels for each node or relationships for each pair of nodes.
In this way, the GNNs are then trained to be predictive of the pseudo labels or to keep
the equivalence between the node embeddings and the original node relationships.

18.4.1 Structure-based Pretext Tasks

Different nodes have different structure properties in graph topology, which can be
measured by the node degree, centrality, node partition, etc. Thus, for structure-
based pretext tasks at the node-level, we expect to align node embeddings extracted
from the GNNs with their structure properties, in an attempt to ensure this informa-
tion is preserved while GNNs learn the node embeddings.

Since degree is the most fundamental topological property, Jin et al (2020d) de-
signs the pretext task to recover the node degree from the node embeddings as fol-
lows:

Lssl =
1

|V | Â
vi2V

`MSE(zssl,i, di) (18.14)

where di represents the degree of node i and zssl,i = Zssl[i, :]> denotes the self-
supervised GNN embeddings of node i. It should be noted that this pretext task
can be generalized to harness any structural property in the node level.

Node centrality measures the importance of nodes based on their structure roles
in the whole graph (Newman, 2018). Hu et al (2019c) designs a pretext task to have
GNNs estimate the rank scores of node centrality. The specific centrality measures
considered are eigencentrality, betweenness, closeness, and subgraph centrality. For
a node pair (u,v) and a centrality score s, with relative order Rs

u,v = 1(su > sv)

where Rs
u,v = 1 if su > sv and Ru,v = 0 if su sv, a decoder Drank

s for centrality score
s estimates its rank score by Sv = Drank

s (zGNN,v). The probability of estimated rank
order is defined by the sigmoid function R̃s

u,v = exp(Su�Sv)
1+exp(Su�Sv)

. Then predicting the
relative order between pairs of nodes could be formalized as a binary classification
problem with the loss:

404 Yu Wang, Wei Jin, and Tyler Derr

Lssl = �Â
s

Â
u,v2V

(Rs
u,v log R̃s

u,v +(1�Rs
u,v) log(1� R̃s

u,v)). (18.15)

Different from peer works, Hu et al (2019c) does not consider any node feature but
instead extract the node features directly from the graph topology, which includes:
(1) degree that defines the local importance of a node; (2) core-number that defines
the connectivity of the subgraph around a node; (3) collective influence that defines
the neighborhood importance of a node; and (4) local clustering coefficient, which
defines the connectivity of 1-hop neighborhood of a node. Then, the four features
(after min-max normalization) are concatenated with a nonlinear transformation and
fed into the GNN where (Hu et al, 2019c) uses the pretext tasks: centrality ranking,
clustering recovery and edge prediction. Another innovative idea in (Hu et al, 2019c)
is to choose a fix-tune boundary in the middle layer of GNNs. The GNN blocks
below this boundary are fixed, while the ones above the boundary are fine-tuned. For
downstream tasks that are closely related to the pre-trained tasks, a higher boundary
is used.

Another important node-level structural property is the partition each node be-
longs after performing a graph partitioning method. In (You et al, 2020c), the pretext
task is to train the GNNs to encode the node partition information. Graph partition-
ing is to partition the nodes of a graph into different groups such that the number
of edges between each group is minimized. Given the node set V , the edge set E ,
and a preset number of partitions p 2 [1, |V |], a graph partitioning algorithm (e.g.,
(Karypis and Kumar, 1995) as used in (You et al, 2020c)) will output a set of nodes
{Vpar1 , ...,Vparp |Vpari ⇢ V , i = 1, ..., p}. Then the classification loss is set exactly the
same as:

Lssl = � 1
|V | Â

vi2V

`CE(zssl,i,yssl,i) (18.16)

where zssl,i denotes the embedding of node vi and assuming that the partitioning
label is a one-hot encoding yssl,i 2 Rp with k-th entry as 1 and others as 0 if vi 2
Vpark , i = 1, ..., |V |,9k 2 [1, p].

18.4.2 Feature-based Pretext Tasks

Node features are another important information that can be leveraged to provide ex-
tra supervision. Since the state-of-the-art GNNs suffer from over-smoothing (Chen
et al, 2020c), the original feature information is partially lost after fed into the
GNNs. In order to reduce the information loss in node embeddings, the pretext task
in (Hu et al, 2020c; Jin et al, 2020d; Manessi and Rozza, 2020; Wang et al, 2017a;
You et al, 2020c) is to first mask node features and let the GNN predict those fea-
tures. More specifically, they randomly mask input node features by replacing them
with special mask indicators and then apply GNNs to obtain the corresponding node
embeddings. Finally a linear model is applied on top of embeddings to predict the
corresponding masked node features. Assuming the set of nodes that are masked is

18 Graph Neural Networks: Self-supervised Learning 405

Vm, then the self-supervised regression loss to reconstruct these masked features is:

Lssl =
1

|Vm| Â
vi2Vm

`MSE(zssl,i,xi) (18.17)

To handle the high sparsity of the node features, it is beneficial to first perform
feature dimensionality reduction on X (such as principal component analysis (PCA)
used in (Jin et al, 2020d)). Additionally, instead of reconstructing node features,
node embeddings could also be reconstructed from their corrupted version, such as
in (Manessi and Rozza, 2020).

Contrary to the graph partitioning where nodes are grouped by the graph topol-
ogy, in graph clustering the clusters of nodes are discovered based on their fea-
tures (You et al, 2020c). In this way the pretext task can be designed to recover the
node clustering assignment. Given the node set V , the feature matrix X , and a preset
number of clusters p 2 [1, |V |] (or without if the clustering algorithm automatically
learns the number of clusters) as input, the clustering algorithm will output a set of
node clusters {Vclu1 , . . . ,Vclup |Vclui ⇢ V , i = 1, ..., p} and assuming for node vi, the
partitioning label is a one-hot encoding yssl,i 2 Rp with k-th entry as 1 and others
as 0 if vi 2 Vcluk , i = 1, ..., |V |,9k 2 [1, p]. Then the loss is the same as Eq. equa-
tion 18.16.

Instead of focusing on individual nodes, pretext tasks have also been developed
based on the relationship between pairs of nodes (Jin et al, 2021, 2020d). The basic
idea is to retain the node pairwise feature similarity in the node embeddings from
GNNs. Suppose Ts,Td denote the sets of node pairs having the highest and the
lowest similarity:

Ts = {(vi,v j)| sim(xi,x j) in top-B of {sim(xi,xb)}B
b=1\sim(xi,xi),8vi 2 V }, (18.18)

Td = {(vi,v j)| sim(xi,x j) in bottom-B of {sim(xi,xb)}B
b=1\sim(xi,xi),8vi 2 V }, (18.19)

where sim(xi,x j) measures the cosine similarity of features between two nodes vi,v j
and B is the number of top/bottom pairs selected for each node. Then the pretext task
is to optimize the following regression loss:

Lssl =
1

|Ts [Td | Â
(vi,v j)2Ts[Td

`MSE
�

fw(|zGNN,i � zGNN, j|),sim(xi,x j)
�
, (18.20)

where fw is a function mapping the difference between two node embeddings from
GNNs to a scalar representing the similarity between them.

406 Yu Wang, Wei Jin, and Tyler Derr

18.4.3 Hybrid Pretext Tasks

Instead of employing only the topology or only the feature information as the extra
supervision, some pretext tasks combine them together as the hybrid supervision, or
even utilize information from the known training labels.

A contrastive framework for unsupervised graph representation learning, GRACE,
where two correlated graph views are generated by randomly performing corrup-
tion on attributes (masking node features) and topology (removing or adding graph
edges) is proposed in (Zhu et al, 2020c). Then the GNNs are trained using a con-
trastive loss to maximize the agreement between node embeddings in these two
views. In each iteration two graph views G 1 = {A1,X1} and G 2 = {A2,X2} are
generated randomly according to the possible augmentation functions from an input
graph G = {A,X}.

The objective is to maximize the similarity of the same nodes in different views of
the graph while minimizing the similarity of different nodes in the same or different
views of the graph. Thus, if we denote the node embeddings in the two views as
Z1

GNN = fq (X1,A1),Z2
GNN = fq (X2,A2), then the contrastive NT-Xent loss is:

Lssl =
1

|P+| Â
(v1

i ,v2
i)2P+

`NT-Xent(Z1
GNN,Z2

GNN,P�), (18.21)

where P+ includes positive pairs of (v1
i ,v

2
i) where v1

i ,v
2
i correspond to the same

node in different views, while P� =
S

(v1
i ,v2

i)2P+ P�
v1

i
represents all sets of negative

samples with P�
v1

i
containing nodes different from vi in the same view (intra-view

negative pairs) or the other view (inter-view negative pairs).
More specifically, in the above, the two graph corruptions are removing edges

and masking node features. In removing edges, a random masking matrix M 2
{0,1}|V |⇥|V | is randomly sampled whose entry is drawn from a Bernoulli distri-
bution Mi j ⇠ B(1 � pr) if Ai j = 1 for the original graph. pr is the probability of
each edge being removed. The resulting matrix can be computed as A0 = A � M
creating the adjacency matrix of graph view G

0 from G .
In masking node features, a random vector m 2 {0,1}d is utilized, where each

dimension of m is independently drawn from a Bernoulli distribution with probabil-
ity 1� pm and d is the dimension of the node features X . Then, the generated node
features X 0 for graph view G

0 from G is computed by:

X 0 = [x1 �m;x2 �m; · · · ;x|V | �m], (18.22)

where [;] is the concatenation operator. Moreover, a modified version of the GRACE
is proposed in (Zhu et al, 2021) where the whole contrastive procedure is the same as
GRACE except that the graph augmentation is adaptively performed based on the
importance of nodes and edges. Specifically, the probability of removing an edge
between nodes vi,v j should reflect the importance of the edge (vi,v j) such that the
augmentation function is more likely to corrupt unimportant edges while keeping

18 Graph Neural Networks: Self-supervised Learning 407

important connective structures intact in augmented views. Similarly the feature
dimensions frequently appearing in influential nodes are seen as important and so
are masked with lower probability.

The observation made in (Chen et al, 2020b) that nodes with further topological
distance to the labeled nodes are more likely to be misclassified indicates the un-
even distribution of the ability of GNNs to embed node features in the whole graph.
However, existing graph contrastive learning methods ignore this uneven distribu-
tion, which motivates Chen et al (2020b) to propose the distance-wise graph con-
trastive learning (DwGCL) method that can adaptively augment the graph topology,
sample the positive and negative pairs, and maximize the mutual information. The
topology information gain (TIG) is calculated based on Group PageRank and node
features to describe the task information effectiveness that the node obtains from
labeled nodes along the graph topology. By ranking the performance of GNNs on
nodes according to their TIG values with/without contrastive learning, it is found
that contrastive learning mainly improves the performance on nodes that are topo-
logically far away from the labeled nodes. Based on the above finding, Chen et al
(2020b) propose to: 1) perturb the graph topology by augmenting nodes according
to their TIG value; 2) sampling the positive and negative pairs considering local/-
global topology distance and node embedding distance; and 3) assigning different
weights to nodes in the self-supervised loss based on their TIG rankings. Results
demonstrate the performance improvement of this distance-wise graph contrastive
learning over the typical contrastive learning approach.

Another special supervision information to exploit is the prediction results of
the model itself. Sun et al (2020c) leverages the multi-stage training framework
to utilize the information of the pseudo labels generated by predictions in the next
rounds of training. The multi-stage training algorithm repeatedly adds the most con-
fident predictions of each class to the label set and re-utilizes these pseudo labeled
data to train the GNNs. Furthermore, a self-checking mechanism based on Deep-
Cluster (Caron et al, 2018) is proposed to guarantee the precision of labeled data.
Assuming that the cluster assignment for node vi is ci 2 {0,1}p (here the number of
clusters is assumed to equal to the number of predefined classes p in the downstream
classification task) and the centroid matrix C 2 Rd0⇥p represents the feature of each
cluster, then we obtain the cluster assignment ci for each node vi by optimizing:

min
C

1
V Â

vi2V

min
ci2{0,1}p

||zGNN,i �Cci||22, s.t. cT
i 1p = 1. (18.23)

After applying DeepCluster to group nodes into multiple clusters, an aligning
mechanism is used to assign nodes in each cluster to their corresponding class de-
fined by downstream tasks. For each cluster k 2 [1, p] in unlabeled data, the compu-
tation of aligning mechanism is:

ck = argmin
m

||kk � µm||2, (18.24)

408 Yu Wang, Wei Jin, and Tyler Derr

where µm denotes the centroid of class m in labeled data, kk denotes the centroid
of cluster k in unlabeled data and ck represents the aligned class that has the clos-
est distance to the centroid kk of the cluster k among all centroids of classes in the
original labeled data. Note that the self-checking can be directly performed by com-
paring the distance of each unlabeled node to centroids of classes in labeled data.
However, directly checking in this naı̈ve way is very time-consuming.

18.5 Graph-level SSL Pretext Tasks

After having just presented the node-level SSL pretext tasks, in this section we focus
on the graph-level SSL pretext tasks where we desire the node embeddings coming
from the GNNs to encode information of graph-level properties.

18.5.1 Structure-based Pretext Tasks

As the counterpart of the nodes in the graph, the edges encode abundant information
of the graph, which can also be leveraged as an extra supervision to design pretext
tasks. The pretext task in (Zhu et al, 2020a) is to recover the graph topology, i.e.,
predict edges, after randomly removing edges in the graph. After node embeddings
zGNN,i is obtained for each node vi, the probability of the edge between any pair of
nodes vi, v j is calculated by their feature similarity as follows:

A0
i j = sigmoid(zGNN,i(zGNN, j)

>), (18.25)

and the weighted cross-entropy loss is used during training, which is defined as:

Lssl = � Â
vi,v j2V

W (Ai j logA0
i j)+(1�Ai j) log(1�A0

i j), (18.26)

where W is the weight hyperparameter used for balancing two classes; which are
node pairs having an edge and node pairs without an edge between them.

As it is known that unclean graph structure usually impedes the applicability of
GNNs (Cosmo et al, 2020; Jang et al, 2019). A method that trains the GNNs by
downstream supervised tasks based on the cleaned graph structure reconstructed
from completing a self-supervised pretext task is introduced in (Fatemi et al, 2021).
The self-supervised pretext task aims to train a separate GNN to denoise the cor-
rupted node feature X̂ generated by either randomly zeroing some dimensions of
the original node feature X when having binary features or by adding independent
Gaussian noise when X is continuous. Two methods are used to generate the initial
graph adjacency matrix Ã. The first method Full Parametrization (FP) treats every
entry in Ã as a parameter and directly optimizes its |V |2 parameters by denoising the
corrupted feature X̂ . The second method MLP-kNN considers a mapping function

18 Graph Neural Networks: Self-supervised Learning 409

kNN(MLP(X)), where a multilayer perceptron (i.e., MLP(·)) updates the original
node features and kNN(·) produces a sparse matrix by selecting top-k similar nodes
to each node and adds edges between them. Then, the generated initial adjacency
matrix Ã is normalized and symmetrized into a new adjacency matrix A as follows:

A = D� 1
2

P̃(Ã)+ P̃(Ã)>

2
D� 1

2 , (18.27)

where P̃ is a function with a non-negative range to ensure the positivity of every
entry in A. In MLP-kNN method, P̃ is the element-wise ReLU function. However,
the ReLU function could result in the gradient flow problem in the FP method, thus
the element-wise ELU function followed by an addition of 1 to avoid the problem
of gradient flow is used instead. Next, a separate GNN-based encoder takes noisy
node features X̂ and the new normalized adjacency matrix A as input and output the
updated node features Ẑ = GNN(X̂ ,A). The parameters in FP and MLP-kNN used
for generating the initial adjacency matrix Ã is optimized by:

Lssl =
1

|Vm| Â
vi2Vm

`MSE(xi, ẑi), (18.28)

where ẑi = Ẑ[i, :]> is the noisy embedding vector of the node vi obtained by the
separate GNN-based encoder. The optimized parameters in FP and MLP-kNN leads
to the generation of more cleaned graph adjacency matrix, which in turn results in
the better performance in the downstream tasks.

In addition to the graph edges and the adjacency matrix, topological distance
between nodes is another important global structural property in graph. The pretext
task in (Peng et al, 2020) is to recover the topological distance between nodes. More
specifically, they leverage the shortest path length between nodes denoted as pi j
between nodes vi and v j, but this could be replaced with any other distance measure.
Then, they define the set C k

i as all the nodes having the shortest path distance of
length k from node vi. More formally, this is defined as:

Ci = C 1
i [C 2

i [· · ·[C di
i , C k

i = {v j|di j = k}, k = 1,2, · · · ,di, (18.29)

where di is the upper bound of the hop count from other nodes to vi, di j is the length
of the path pi j, and Ci is the union of all the k-hop shortest path neighbor sets Ck

i .
Based on these sets, one-hot encodings di j 2Rdi are created for pairs of nodes vi,v j,
where v j 2 Ci, according to their distance di j. Then, the GNN model is guided to
extract node embeddings that encode node topological distance as follows:

Lssl = Â
vi2V

Â
v j2Ci

`CE(fw(|zGNN,i � zGNN, j|),di j), (18.30)

where fw is a function mapping the difference between two node embeddings to
the probabilities of pairs of nodes belonging to the corresponding category of the
topological distance. Since the number of the categories depends on the upper bound

410 Yu Wang, Wei Jin, and Tyler Derr

of the hop count (topological distance) but precisely determining this upper bound
is time-consuming for a big graph, it is assumed that the number of hops (distance)
is under control based on small-world phenomenon (Newman, 2018) and is further
divided into several major categories that clearly discriminates the dissimilarity and
partly tolerates the similarity. Experiments demonstrate that dividing the topological
distance into four categories: C 1

i ,C 2
i ,C 3

i ,C k
i (k � 4) achieves the best performance

(i.e., di=4). Another problem is that the number of nodes that are close to the focal
node vi is much less than the nodes that are further away (i.e., the magnitude of C di

i
will be significantly larger than other sets). To circumvent this imbalance problem,
node pairs are sampled with an adaptive ratio.

Network motifs are recurrent and statistically significant subgraphs of a larger
graph and (Zhang et al, 2020f) designs a pretext task to train a GNN encoder that can
automatically extract graph motifs. The learned motifs are further leveraged to gen-
erate informative subgraphs used in graph-subgraph contrastive learning. Firstly, a
GNN-based encoder fq and a m-slot embedding table {m1, ...,mm} denoting m clus-
ter centers of m motifs are initialized. Then, a node affinity matrix U 2 R|V |⇥|V | is
calculated by softmax normalization on the embedding similarity D(zGNN,i,zGNN, j)
between nodes i, j as in Eq. equation 18.13. Afterwards, spectral clustering (VON-
LUXBURG, 2007) is performed on U to generate different groups, within which
nG connected components that have more than three nodes are collected as the sam-
pled subgraphs from the graph G and their embeddings are calculated by apply-
ing READOUT function. For each subgraph, its cosine similarity to each of the m
motifs is calculated to obtain a similarity metric S 2 Rm⇥nG . To produce semantic-
meaningful subgraphs that are close to motifs, the top 10% most similar subgraphs
to each motif are selected based on the similarity metric S and are collected into a
set G top. The affinity values in U between pairs of nodes in each of these subgraphs
are increased by optimizing the loss:

L1 = � 1
|G top|

|G top|

Â
i=1

Â
(v j ,vk)2G top

i

U [j,k]. (18.31)

The optimization of the above loss forces nodes in motif-like subgraphs to be more
likely to be grouped together in spectral clustering, which leads to more subgraph
samples aligned with the motifs. Next, the embedding table of motifs is optimized
based on the sampled subgraphs. The assignment matrix Q 2 Rm⇥nG is found by
maximizing similarities between embeddings and its assigned motif:

max
Q

Tr(QTS)� 1
l Â

i, j
Q[i, j] logQ[i, j], (18.32)

where the second term controlled by hyperparameter l is to avoid all representa-
tions collapsing into a single cluster center. After the cluster assignment matrix Q is
obtained, the GNN-based encoder and the motif embedding table are trained, which
is equivalent to a supervised m-class classification problem with labels Q and the
prediction distribution eS obtained by applying a column-wise softmax normaliza-

18 Graph Neural Networks: Self-supervised Learning 411

tion with temperature t:

L2 = � 1
nG

nG

Â
i=1

`CE(qi, s̃i), (18.33)

where qi = Q[:, i] and s̃i = eS[:, i] denote the assignment distribution and predicted
distribution for the subgraph i, respectively. Optimizing Eq. equation 18.33 jointly
enhances the ability of GNN encoder to extract subgraphs that are similar to mo-
tifs and improves the embeddings of motifs. The last step is to train the GNN-
based encoder by a classification task where subgraphs are reassigned back to their
corresponding graphs. Note that the subgraphs are generated by the Motif-guided
extractor, which is more likely to capture higher-level semantic information com-
pared with randomly sampled subgraphs. The whole framework is trained jointly
by weighted combining L1,L2 and the contrastive loss.

Aside from the network motifs, other subgraph structures can be leveraged to
provide extra supervision in designing pretext tasks. In (Qiu et al, 2020a), an r-ego
network for a certain vertex is defined as the subgraph induced by nodes that have
shortest path with length shorter than r. Then a random walk with restart is initiated
at ego vertex vi and the subgraph induced by nodes that are visited during the random
walk starting at vi are used as the augmented version of the r-ego network. First, two
augmented r-ego networks centered around vertex vi are obtained by performing the
random walk twice (i.e., Gi and G +

i), which are defined as a positive pair since they
come from the same r-ego network. In comparison, a negative pair corresponds to
two subgraphs augmented from different r-ego networks (e.g., one coming from vi
and another coming from v j resulting in random walk induced subgraphs Gi and G j,
respectively). Based on the above defined positive and negative subgraph pairs, a
contrastive loss is set up to optimize the GNNs as follows:

Lssl =
1

|P+| Â
(Gi,G

+
i)2P+

`NT-Xent(Z1
ssl,Z

2
ssl,P

�), (18.34)

where Z1
ssl,Z

2
ssl denotes the GNN-based graph embeddings and specifically here the

two different views are the same Z1
ssl = Z2

ssl. P+ contains positive pairs of sub-
graphs (Gi,G

+
i) sampled by random walk starting at the same ego vertex vi in the

same graph while P� =
S

(Gi,G
+
i)2P+ P�

Gi
represents all sets of negative samples.

Specifically P�
Gi

represents subgraphs sampled by random walk starting at either
different ego vertex from vi in G or directly sampled by random walk in different
graphs from G .

Although Graph Attention Network (GAT) (Petar et al, 2018) achieves perfor-
mance improvements over the original GCN (Kipf and Welling, 2017b), there is
little understanding of what graph attention learns. To this end, Kim and Oh (2021)
proposes a specific pretext task to leverage the edge information to supervise what
graph attention learns:

412 Yu Wang, Wei Jin, and Tyler Derr

Lssl =
1

|E [E �| Â
(j,i)2E [E �

1
�
(j, i) 2 E

�
· log ci j +1

�
(j, i) 2 E ��

log(1� ci j),

(18.35)
where E is the set of edges, E � is the sampled set of node pairs without edges,
and ci j is the edge probability between node i, j calculated from their embeddings.
Based on two primary edge attentions, the GAT attention (shortly as GO) (Petar
et al, 2018) and the dot-product attention (shortly as DP) (Luong et al, 2015), two
advanced attention mechanisms, SuperGATSD (Scaled Dot-product, shortly as SD)
and SuperGATMX (Mixed GO and DP, shortly as MX) are proposed:

ei j,SD = ei j,DP/
p

F , ci j,SD = s(ei j,SD), (18.36)

ei j,MX = ei j,GO ·s(ei j,DP), ci j,MX = s(ei j,DP), (18.37)

where s denotes the sigmoid function taking the edge weight ei j and calculating the
edge probability ci j. SuperGATSD divides the dot-product of edge ei j,DP by a square
root of dimension as Transformer (Vaswani et al, 2017) to prevent some large values
from dominating the entire attention after softmax. SuperGATMX multiplies GO and
DP attention with sigmoid, which is motivated by the gating mechanism of Gated
Recurrent Units (GRUs) (Cho et al, 2014a). Since DP attention with the sigmoid
denotes the edge probability, multiplying s(ei j,DP) in calculating ei j,MX can softly
drop neighbors that are not likely linked while implicitly assigning importance to
the remaining nodes. ei j,DP,ei j,GO are the weight of edge (i, j) used to calculate the
GO and DP attention. Results disclose several insightful discovers including the GO
attention learns label-agreement better than DP, whereas DP predicts edge presence
better than GO, and the performance of the attention mechanism is not fixed but
depends on homophily and average degree of the specific graph.

The topological information can also be generated manually for designing pretext
tasks. Gao et al (2021) proposes to encode the transformation information between
two different graph topologies in the representations of nodes obtained by GNNs.
First, they transform the original graph adjacency matrix A into Â by randomly
adding or removing edges from the original edge set. Then, by feeding the original
and transformed graph topology and the node feature matrix into any GNN-based
encoder, the feature representation ZGNN, ẐGNN before and after topology transfor-
mation are calculated and their difference DZ 2 RN⇥F 0 is defined as:

DZ = ẐGNN �ZGNN = [DzGNN,1, ...,DzGNN,N]> = [ẑGNN,1 � zGNN,1, ..., ẑGNN,N � zGNN,N]>.
(18.38)

Next they predict the topology transformation between node vi and v j through the
node-wise feature difference DZ by constructing the edge representation as:

ei j =
exp(�(Dzi �Dz j)� (Dzi �Dz j))

||exp(�(Dzi �Dz j)� (Dzi �Dz j))||
, (18.39)

where � denotes the Hardamard product. This edge representation ei j is then fed
into an MLP for the prediction of the topological transformation, which includes

18 Graph Neural Networks: Self-supervised Learning 413

four classes: edge addition, edge deletion, keeping disconnection and keeping con-
nection between each pair of nodes. Thus, the GNN-based encoder is trained by:

Lssl =
1

|V |2 Â
vi,v j2V

`CE(MLP(ei j), ti j) (18.40)

where we denote the topological transformation category between nodes vi and v j
as one-hot encoding ti j 2 R4.

18.5.2 Feature-based Pretext Tasks

Typically, graphs do not come with any feature information and here the graph-level
features refer to the graph embeddings obtained after applying a pooling layer on
all node embeddings from GNNs.

GraphCL (You et al, 2020b) designs the pretext task to first augment graphs
by four different augmentations including node dropping, edge perturbation, at-
tribute masking and subgraph extraction and then maximize the mutual information
of the graph embeddings between different augmented views generated from the
same original graph while also minimizing the mutual information of the graph em-
beddings between different augmented views generated from different graphs. The
graph embeddings Zssl are obtained through any permutational-invariant READ-
OUT function on node embeddings followed by applying an adaptation layer. Then
the mutual information is maximized by optimizing the following NT-Xent con-
trastive loss:

Lssl =
1

|P+| Â
(Gi,G j)2P+

`NT-Xent(Z1
ssl,Z

2
ssl,P

�), (18.41)

where Z1
ssl,Z

2
ssl represent graph embeddings under two different views. The view

could be the original view without any augmentation or the one generated from ap-
plying four different augmentations. P+ contains positive pairs of graphs (Gi,G j)
augmented from the same original graph while P� =

S
(Gi,G j)2P+ P�

Gi
represents

all sets of negative samples. Specifically P�
Gi

contains graphs augmented from the
graph different from Gi. Numerical results demonstrate that the augmentation of
edge perturbations benefits social networks but hurts biochemical molecules. Ap-
plying attribute masking achieves better performance in denser graphs. Node drop-
ping and subgraph extraction are generally beneficial across all datasets.

414 Yu Wang, Wei Jin, and Tyler Derr

Fig. 18.6: An example of a context and r-neighborhood graph.

18.5.3 Hybrid Pretext Tasks

One way to use the information of the training nodes in designing pretext tasks is
developed in (Hu et al, 2020c) where the context concept is raised. The goal of this
work is to pre-train a GNN so that it maps nodes appearing in similar graph structure
contexts to nearby embeddings. For every node vi, the r-hop neighborhood of vi
contains all nodes and edges that are at most r-hops away from vi in the graph. The
context graph of vi is a subgraph between r1-hops and r2-hops away from node vi.
It is required that r1 < r so that some nodes are shared between the neighborhood
and the context graph, which is referred to as context anchor nodes. Examples of
neighborhood and context graphs are shown in Fig. 18.6. Two GNN encoders are set
up: the main GNN encoder is to get the node embedding zr

GNN,i based on their r-hop
neighborhood node features and the context GNN is to get the node embeddings
of every other node in the context anchor node set, which are then averaged to
get the node context embedding ci. Then Hu et al (2020c) used negative sampling
to jointly learn the main GNN and the context GNN. In the optimization process,
positive samples refer to the situation when the center node of the context and the
neighborhood graphs is the same while the negative samples refer to the situation
when the center nodes of the context and the neighborhood graphs are different. The
learning objective is a binary classification of whether a particular neighborhood and
a particular context graph have the same center node and the negative likelihood loss
is used as follows:

Lssl = �(
1

|K | Â
(vi,v j)2K

(yi log(s((zr
GNN,i)

>c j))+(1�yi) log(1�s((zr
GNN,i)

>c j))))

(18.42)
where yi = 1 for the positive sample where i = j while yi = 0 for the negative sample
where i 6= j, with K denoting the set of positive and negative pairs, and s is the
sigmoid function computing the probability.

18 Graph Neural Networks: Self-supervised Learning 415

Similar idea to employ the context concept in completing pretext tasks is also
proposed in (Jin et al, 2020d). Specifically, the context here is defined as:

yic =
|GVl (vi,c)|+ |GVu(vi,c)|

|GVl (vi)|+ |GVu(vi)|
,c = 1, ..., l, (18.43)

where Vu and Vl denote the unlabeled and labeled node set, GVu(vi) denotes the
unlabeled nodes that are adjacency to node vi, GVu(vi,c) denotes the unlabeled nodes
that have been assigned class c and are adjacency to node vi, NVl (vi) denotes the
labeled nodes that are adjacency to node vi, GVl (vi,c) denotes the labeled nodes that
are adjacency to node vi and of class c. To generate labels for the unlabeled nodes so
as to calculate the context vector yi for each node vi, label propagation (LP) (ZHU,
2002) or the iterative classification algorithm (ICA) (Neville and Jensen, 2000) is
used to construct pseudo labels for unlabeled nodes in Vu. Then the pretext task is
approached by optimizing the following loss function:

Lssl =
1

|V | Â
vi2V

`CE(zssl,i,yi), (18.44)

The main issue of the above pretext task is the error caused by generating la-
bels from LP or ICA. The paper (Jin et al, 2020d) further proposed two methods
to improve the above pretext task. The first method is to replace the procedure of
assigning labels of unlabeled nodes based on only one method such as LP or ICA
with assigning labels by ensembling results from multiple different methods. Their
second method treats the initial labeling from LP or ICA as noisy labels, and then
leverages an iterative approach (Han et al, 2019) to improve the context vectors,
which leads to significant improvements based on this correction phase.

One previous pretext task is to recover the topological distance between nodes.
However, calculating the distance of the shortest path for all pairs of nodes even
after the sampling is time-consuming. Therefore, Jin (Jin et al, 2020d) replaces the
pairwise distance between nodes with the distance between nodes and their corre-
sponding clusters. For each cluster, a fixed set of anchor/center nodes is established.
For each node, its distance to this set of anchor nodes is calculated. The pretext task
is to extract node features that encode the information of this node2cluster distance.
Suppose k clusters are obtained by applying the METIS graph partitioning algo-
rithm (Karypis and Kumar, 1998) and the node with the highest degree is assumed
to be the center of the corresponding cluster, then each node vi will have a clus-
ter distance vector di 2 Rk and the distance-to-cluster pretext task is completed by
optimizing:

Lssl =
1

|V | Â
vi2V

`MSE(zssl,i,di), (18.45)

Aside from the graph topology and the node features, the distribution of the train-
ing nodes and their training labels are another valuable source of information for
designing pretext tasks. One of the pretext tasks in (Jin et al, 2020d) is to require
the node embeddings output by GNNs to encode the information of the topological

416 Yu Wang, Wei Jin, and Tyler Derr

distance from any node to the training nodes. Assuming that the total number of
classes is p and for class c 2 {1, ..., p} and the node vi 2 V , the average, minimum
and maximum shortest path length from vi to all labeled nodes in class c is calcu-
lated and denoted as di 2 R3p, then the objective is to optimize the same regression
loss as defined in Eq. equation 18.45

The generating process of networks encodes abundant information for design-
ing pretext tasks. Hu et al (2020d) propose the GPT-GNN framework for generative
pre-training of GNNs. This framework performs attribute and edge generation to
enable the pre-trained model to capture the inherent dependency between node at-
tributes and graph structure. Assuming that the likelihood over this graph by this
GNN model is p(G ;q) which represents how the nodes in G are attributed and
connected, GPT-GNN aims to pre-train the GNN model by maximizing the graph
likelihood, i.e., q ⇤ = maxq p(G ;q). Given a permutated order, the log likelihood is
factorized autoregressively - generating one node per iteration as:

log pq (X ,E) =
|V |

Â
i=1

log pq (xi,Ei|X<i,E<i) (18.46)

For all nodes that are generated before the node i, their attributes X<i, and the edges
between these nodes E<i are used to generate a new node vi, including both its at-
tribute xi and its connections with existing nodes Ei. Instead of directly assuming
that xi,Ei are independent, they devise a dependency-aware factorization mecha-
nism to maintain the dependency between node attributes and edge existence. The
generation process can be decomposed into two coupled parts: (1) generating node
attributes given the observed edges, and (2) generating the remaining edges given
the observed edges and the generated node attributes. For computing the loss of
attribute generation, the generated node feature matrix X is corrupted by masking
some dimensions to obtain the corrupted version X̂Attr and further fed together with
the generated edges into GNNs to get the embeddings ẐAttr

GNN. Then, the decoder
DecAttr(·) is specified, which takes ẐAttr

GNN as input and outputs the predicted attributes
DecAttr(ẐAttr

GNN). The attribute generation loss is:

L Attr
ssl =

1
|V | Â

vi2V

`MSE(DecAttr(ẑAttr
GNN,i),xi), (18.47)

where ẑAttr
GNN,i = ẐAttr

GNN[i, :]> denotes the decoded embedding of node vi. For com-
puting the loss of edge reconstruction, the original generated node feature matrix X
is directly fed together with the generated edges into GNNs to get the embeddings
ZEdge

GNN. Then the contrastive NT-Xent loss is calculated:

L Edge
ssl =

1
|P+| Â

(vi,v j)2P+

`NT-Xent(Z
Edge
GNN,ZEdge

GNN,P�), (18.48)

18 Graph Neural Networks: Self-supervised Learning 417

where P+ contains positive pairs of connected nodes (vi,v j) while P� =
S

(vi,v j)2P+ P�
vi

represents all sets of negative samples and P�
vi

contains all nodes that are not directly
linked with node vi. Note here two views are set equal, i.e., Z1 = Z2 = ZEdge

GNN.

18.6 Node-graph-level SSL Pretext Tasks

All the above pretext tasks are designed based on either the node or the graph level
supervision. However, there is another final line of research combining these two
sources of supervision to design pretext tasks, which we summarize in this section.

Veličković et al (2019) proposed to maximize the mutual information between
representations of high-level graphs and low-level patches. In each iteration, a nega-
tive sample X̂ , Â is generated by corrupting the graph through shuffling node features
and removing edges. Then a GNN-based encoder is applied to extract node repre-
sentations ZGNN and ẐGNN, which are also named as the local patch representations.
The local patch representations are further fed into an injective readout function to
get the global graph representations zGNN,G = READOUT(ZGNN). Then the mutual
information between ZGNN and zGNN,G is maximized by minimizing the following
loss function:

Lssl =
1

|P+|+ |P�|
⇣ |P+|

Â
i=1

E(X ,A)[logs(z>
GNN,iWzGNN,G)] (18.49)

+
|P�|

Â
j=1

E(X̂ ,Â)[log(1�s(z̃>
GNN,iWzGNN,G))]

⌘
,

where |P+| and |P�| are the number of the positive and negative pairs, s stands
for any nonlinear activation function and PReLU is used in (Veličković et al, 2019),
z>

GNN,iWzGNN,G calculates the weighted similarity between the patch representation
centered at node vi and the graph representation. A linear classifier is followed up
to classify nodes after the above contrastive pretext task.

Similar to (Veličković et al, 2019) where the mutual information between the
patch representations and the graph representations is maximized, Hassani and
Khasahmadi (2020) proposed another framework of contrasting the node represen-
tations of one view and the graph representations of another view. The first view is
the original graph and the second view is generated by a graph diffusion matrix. The
heat and personalized PageRank (PPR) diffusion matrix are considered, which are:

Sheat = exp(tAD�1 � t), (18.50)

SPPR = a(In � (1�b)D�1/2AD�1/2)�1, (18.51)

where b denotes teleport probability, t is the diffusion time, and D is the diago-
nal degree matrix. After D is obtained, two different GNN encoders followed by a

418 Yu Wang, Wei Jin, and Tyler Derr

shared projection head are applied on nodes in the original graph adjacency matrix
and the generated diffusion matrix to get two different node embeddings Z1

GNN and
Z2

GNN. Two different graph embeddings z1
GNN,G and z2

GNN,G are further obtained by
applying a graph pooling function to the node representations (before the projec-
tion head) and followed by another shared projection head. The mutual information
between nodes and graphs in different views is maximized through:

Lssl = � 1
|V | Â

vi2V
(MI(z1

GNN,i,z2
GNN,G)+MI(z2

GNN,i,z1
GNN,G)), (18.52)

where the MI represents the mutual information estimator and four estimators are
explored, which are noise-contrastive estimator, Jensen-Shannon estimator, normal-
ized temperature-scaled cross-entropy, and Donsker-Varadhan representation of the
KL-divergence. Note that the mutual information in Eq. equation 18.52 is averaged
over all graphs in the original work (Hassani and Khasahmadi, 2020). Addition-
ally, their results demonstrate that Jensen-Shannon estimator achieves better results
across all graph classification tasks, whereas in the node classification task, noise
contrastive estimation achieves better results. They also discover that increasing the
number of views does not increase the performance on downstream tasks.

18.7 Discussion

Existing methods employing self-supervision to graph neural networks achieve per-
formance improvements and numerous insightful results are also discovered in the
meantime. While most of the self-supervised pretext tasks are helpful for the down-
stream tasks, there are still a fair proportion of pretext tasks that bring weak im-
provement or even fail to boost the performance (Gao et al, 2021; Jin et al, 2020d;
Manessi and Rozza, 2020; You et al, 2020c). This is either because these pretext
tasks are highly unrelated to the primary task, i.e., the encoded features useful for
pretext tasks are useless or even harmful (Manessi and Rozza, 2020) for down-
stream tasks or because the information learned from completing pretext tasks can
already be learned from completing downstream tasks by GNNs (Jin et al, 2020d).
Besides, the strength of the performance improvement depends on the specific GNN
architecture used for completing pretext and downstream tasks. The improvements
are more significant for basic GNNs such as GCN, GAT, and GIN while less for
more advanced GNNs such as GMNN (You et al, 2020c). Furthermore, one pretext
task is not universally the best across multiple datasets (Gao et al, 2021; Manessi
and Rozza, 2020). Therefore, whether a self-supervised pretext task helps GNNs in
the standard target performance is determined by first whether the dataset allows
the GNNs to extract extra feature information through completing pretext tasks,
and second whether the extra self-supervised information complement, contradict
to or has already been covered by information extracted from existing architec-
ture (You et al, 2020c). Numerous works focus on applying contrastive learning

18 Graph Neural Networks: Self-supervised Learning 419

as a form of self-supervised learning (Chen et al, 2020b; Hassani and Khasahmadi,
2020; Veličković et al, 2019; You et al, 2020b; Zhu et al, 2021). Generally they find
that while composing different augmentations benefits the performance (You et al,
2020b), increasing the number of views generated from the same graph augmenta-
tion technique to more than two cause no further improvement (Hassani and Khasah-
madi, 2020), which is different from visual representation learning. Moreover, the
beneficial combinations of augmentations are data-specific because of the highly
heterogeneous nature of the graph-structured data and harder contrastive tasks are
more helpful than overly simple ones (You et al, 2020b). Therefore, designing viable
pretext tasks requires domain specific knowledge and should be targeted towards
specific types of networks, GNN architectures and downstream tasks.

18.8 Summary

In this chapter, we provided a systemic, categorical and comprehensive overview on
the recent works leveraging self-supervised learning in graph neural networks. De-
spite recent successes achieved by applying self-supervised learning in the text and
image domains, self-supervised learning applied to the graph domain, especially
for graph neural networks, is still in its emerging stage. Several promising direc-
tions could be pursued to further advance this field. First, although a large surge of
research focuses on designing effective pretext tasks boosting the performance of
graph neural networks, few works focus on visualizing, interpreting and explaining
the underlying reason causing such beneficial performance improvements. Deeply
understanding the intrinsic mechanism as to why and how SSL helps GNNs could
help us design more powerful pretext tasks. Second, similar to the work defining
the architectural design space for GNNs to quickly query the best GNN design
for a novel task on a novel dataset (You et al, 2020a), we should collect and clas-
sify various pretext tasks and create a design space for SSL in GNNs. This allows
for transferring the best designs of pretext tasks across different downstream tasks,
GNN architectures and datasets. We hope that this chapter can shed some light on
the main ideas of applying self-supervised learning to graph neural networks and
related applications in order to encourage progress in the field.

420 Yu Wang, Wei Jin, and Tyler Derr

Editor’s Notes: Although methods introduced in the previous chapter
(chapter 4, 5, 6, 15, and 16) have achieved state-of-the-art performances in
corresponding tasks, they require large annotated datasets. Self-supervised
learning seeks to create and utilize pretext labels on unlabeled data. Pre-
text tasks are relevant to traditional graph analysis tasks, such as node-level
tasks (chapter 4) and graph level tasks (chapter 9), while pretext tasks use
pseudo labels. The development of self-supervised GNN is of great signif-
icance to domains where labeled data are difficult to obtain, such as drug
development (chapter 24). Besides, domains that have accumulated a large
number of unlabeled data sets, such as computer vision (chapter 20) and
natural language processing (chapter 21), also benefit from self-supervised
learning.

Part IV
Broad and Emerging Applications with

Graph Neural Networks

