
Chapter 17
Graph Neural Networks: AutoML

Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

Abstract Graph neural networks (GNNs) are efficient deep learning tools to analyze
networked data. Being widely applied in graph analysis tasks, the rapid evolution of
GNNs has led to a growing number of novel architectures. In practice, both neural
architecture construction and training hyperparameter tuning are crucial to the node
representation learning and the final model performance. However, as the graph data
characteristics vary significantly in the real-world systems, given a specific scenario,
rich human expertise and tremendous laborious trials are required to identify a suit-
able GNN architecture and training hyperparameters. Recently, automated machine
learning (AutoML) has shown its potential in finding the optimal solutions automat-
ically for machine learning applications. While releasing the burden of the manual
tuning process, AutoML could guarantee access of the optimal solution without ex-
tensive expert experience. Motivated from the previous successes of AutoML, there
have been some preliminary automated GNN (AutoGNN) frameworks developed
to tackle the problems of GNN neural architecture search (GNN-NAS) and train-
ing hyperparameter tuning. This chapter presents a comprehensive and up-to-date
review of AutoGNN in terms of two perspectives, namely search space and search
algorithm. Specifically, we mainly focus on the GNN-NAS problem and present the

Kaixiong Zhou
Department of Computer Science and Engineering, Texas A&M University, e-mail: zkxiong@
tamu.edu

Zirui Liu
Department of Computer Science and Engineering, Texas A&M University, e-mail:
tradigrada@tamu.edu

Keyu Duan
Department of Computer Science and Engineering, Texas A&M University, e-mail: k.duan@
tamu.edu

Xia Hu
Department of Computer Science and Engineering, Texas A&M University, e-mail: hu@cse.
tamu.edu

371

zkxiong@tamu.edu
zkxiong@tamu.edu
tradigrada@tamu.edu
k.duan@tamu.edu
k.duan@tamu.edu
hu@cse.tamu.edu
hu@cse.tamu.edu

372 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

state-of-the-art techniques in these two perspectives. We further discuss the open
problems related to the existing methods for future research.

17.1 Background

Graph neural networks (GNNs) have made substantial progress in integrating deep
learning approaches to analyze graph-structured data collected from various do-
mains, such as social networks (Ying et al, 2018b; Huang et al, 2019d; Monti et al,
2017; He et al, 2020), academic networks (Yang et al, 2016b; Kipf and Welling,
2017b; Gao et al, 2018a), and biochemical modular graphs (Zitnik and Leskovec,
2017; Aynaz Taheri, 2018; Gilmer et al, 2017; Jiang and Balaprakash, 2020). Fol-
lowing the common message passing strategy, GNNs apply spatial graph convolu-
tional layer to learn a node’s embedding representation via aggregating the repre-
sentations of its neighbors and combining them to the node itself. A GNN archi-
tecture is then constructed by the stacking of multiple such layers and their inter-
layer skip connections, where the elementary operations of a layer (e.g., aggrega-
tion & combination functions) and the concrete inter-layer connections are specified
specifically in each design. To adapt to different real-world applications, a variety of
GNN architectures have been explored, including GCN (Kipf and Welling, 2017b),
GraphSAGE (Hamilton et al, 2017b), GAT (Veličković et al, 2018), SGC (Wu et al,
2019a), JKNet (Xu et al, 2018a), and GCNII (Chen et al, 2020l). They vary in how
to aggregate the neighborhood information (e.g., mean aggregation in GCN versus
neighbor attention learning in GAT) and the choices of skip connections (e.g., none
connection in GCN versus initial connection in GCNII).

Despite the significant success of GNNs, their empirical implementations are
usually accompanied with careful architecture engineering and training hyperpa-
rameter tuning, aiming to adapt to the different types of graph-structured data.
Based on the researcher’s prior knowledge and trial-and-error tuning processes, a
GNN architecture is instantiated from its model space specifically and evaluated in
each graph analysis task. For example, considering the underlying model Graph-
SAGE (Hamilton et al, 2017b), the various-size architectures determined by the
different hidden units are applied respectively for citation networks and protein-
protein interaction graphs. Furthermore, the optimal skip connection mechanisms
in JKNet architectures (Xu et al, 2018a) vary with the real-world tasks. Except the
architecture engineering, the training hyperparameters play important roles in the
final model performance, including learning rate, weight decay, and epoch num-
bers. In the open repositories, their hyperparameters are manually manipulated to
get the desired model performances. The tedious selections of GNN architectures
and training hyperparameters not only burden data scientists, but also make it dif-
ficult for beginners to access the high-performance solutions quickly for their tasks
on hand.

Automated machine learning (AutoML) has emerged as a prevailing research to
liberate the community from the time-consuming manual tuning processes (Chen

17 Graph Neural Networks: AutoML 373

et al, 2021). Given any task and based on the predefined search space, AutoML
aims at automatically optimizing the machine learning solutions (or denoted with
the term designs), including neural architecture search (NAS) and automated hyper-
parameter tuning (AutoHPT). While NAS targets the optimization of architecture-
related parameters (e.g., the layer number and hidden units), AutoHPT indicates the
selections of training-related parameters (e.g., the learning rate and weight decay).
They are the sub-fields of AutoML. It has been widely reported that the novel neu-
ral architectures discovered by NAS outperform the human-designed ones in many
machine learning applications, including image classification (Zoph and Le, 2016;
Zoph et al, 2018; Liu et al, 2017b; Pham et al, 2018; Jin et al, 2019a; Luo et al, 2018;
Liu et al, 2018b,c; Xie et al, 2019a; Kandasamy et al, 2018), semantic image seg-
mentation (Chenxi Liu, 2019), and image generation (Wang and Huan, 2019; Gong
et al, 2019). Dating back to 1900’s (Kohavi and John, 1995), it has been commonly
acknowledged that AutoHPT could improve over the default training setting (Feurer
and Hutter, 2019; Chen et al, 2021). Motivated by the previous successful applica-
tions of AutoML, there have been some recent efforts on conjoining the researches
of AutoML and GNNs (Gao et al, 2020b; Zhou et al, 2019a; You et al, 2020a;
Ding et al, 2020a; Zhao et al, 2020a,g; Nunes and Pappa, 2020; Li and King, 2020;
Shi et al, 2020; Jiang and Balaprakash, 2020). They generally define the automated
GNN (AutoGNN) as an optimization problem and formulate their own working
pipelines from three perspectives, as shown in Figure 17.1, the search space, search
algorithm, and performance estimation strategy. The search space consists of a large
volume of candidate designs, including GNN architectures and the training hyper-
parameters. On top of the search space, several heuristic search algorithms are pro-
posed to solve the NP-complete optimization problem by iteratively approximating
the well-performing designs, including random search (You et al, 2020a). The ob-
jective of performance estimation is to accurately estimate the task performance of
every candidate design explored at each step. Once the search progress terminates,
the best neural architecture accompanied with the suitable training hyperparameters
is returned to be evaluated on the downstream machine learning task.

In this chapter, we will organize the existing efforts and illustrate AutoGNN
framework with the following sections: notations, problem definition, and chal-
lenges of AutoGNN (in Sections 17.1.1, 17.1.2, and 17.1.3), search space (in Sec-
tion 17.2), and search algorithm (in Section 17.3). We then present the open prob-
lems for future research in Section 17.4. Specially, since the community’s interests
mainly focus on discovering the powerful GNN architecture, we pay more attentions
to GNN-NAS in this chapter.

17.1.1 Notations of AutoGNN

Following the previous expressions (You et al, 2020a), we use the term “design”
to refer to an available solution of the optimization problem in AutoGNN. A de-
sign consists of a concrete GNN architecture and a specific set of training hy-

374 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

GNN

Best
design

Performance

Search algorithm
Graph

convolution

Graph
convolution

Dropout rate

Batch norm

Learning rate

Training epoch

Search space

Training
hyperparameter

Fig. 17.1: Illustration of a general framework for AutoGNN. The search space con-
sists of plenty of designs, including GNN architectures and the training hyperparam-
eters. At each step, the search algorithm samples a candidate design from the search
space and estimates its model performance on the downstream task. Once the search
progress terminates, the best design accompanied with the highest performance on
the validation set is returned and exploited for the real-world system.

perparameters. Specifically, the design is characterized by multiple dimensions,
including architecture dimensions (e.g., the layer number, skip connections, ag-
gregation, and combination functions) and hyperparameter dimensions (e.g., the
learning rate and weight decay). Along each design dimension, there is a se-
ries of different elementary options provided to support the automated architec-
ture engineering or training hyperparameter tuning. For example, we could have
candidates {SUM,MEAN,MAX} at the aggregation function dimension, and use
{1e-4,5e-4,1e-3,5e-3,0.01,0.1} at the learning rate dimension. Given the series
of candidate options along each dimension, the search space in AutoGNN is con-
structed by Cartesian product of all the design dimensions. A design is instanti-
ated by assigning concrete values to these dimensions, such as a GNN architecture
with the aggregation function of MEAN and learning rate of 1e-3. Note that GNN-
NAS and AutoHPT explore in the search spaces consisted of expansive GNN archi-
tectures and hyperparameter combinations, respectively; AutoGNN optimizes in a
more comprehensive search space containing both of them.

17 Graph Neural Networks: AutoML 375

17.1.2 Problem Definition of AutoGNN

Before diving into detailed techniques, we examine the essence of AutoGNN by
formally defining its optimization problem. To be specific, let F be the search space.
Let Dtrain and Dvalid be the training and validation sets, respectively. Let M be the
performance evaluation metric of a design in any given graph analysis task, e.g., F1
score or accuracy in the node classification task. The objective of AutoGNN is to
find the optimal design f ⇤ 2 F in terms of M evaluated on the validation set Dvalid.
Formally, AutoGNN requires solving the following bi-level optimization problem:

f ⇤ = argmax f 2F M(f (q ⇤);Dvalid),

s.t. q ⇤ = argminq L(f (q);Dtrain).
(17.1)

where q ⇤ denotes the optimized trainable weights of design f and L denotes the loss
function. For each design, AutoGNN will first optimize its associated weights q by
minimizing the loss on the training set through gradient descent, and then evaluates
it on the validation set to decide whether this design is the optimal one. By solving
the above optimization problem, AutoGNN automates the architecture engineering
and training hyperparameter tuning procedure, and pushes GNN designs to exam-
ine a broad scope of candidate solutions. However, it is well known that such the
bi-level optimization problem is NP-complete (Chen et al, 2021), thereby it would
be extremely time-consuming for searching and evaluating the well-performing de-
signs on large graphs with massive nodes and edges. Fortunately, there have been
some heuristic search techniques proposed to locate the local optimal design (e.g.,
CNN or RNN architecture) as close as possible to the global one in the applications
of image classification and natural language processing, including reinforcement
learning (RL) (Zoph and Le, 2016; Zoph et al, 2018; Pham et al, 2018; Cai et al,
2018a; Baker et al, 2016), evolutionary methods (Liu et al, 2017b; Real et al, 2017;
Miikkulainen et al, 2019; Xie and Yuille, 2017; Real et al, 2019), and Bayesian op-
timization (Jin et al, 2019a). They iteratively explore the next design and update the
search algorithm based on the performance feedback of the new design, in order to
move toward the global optimal solution. Compared with the previous efforts, the
characteristics of AutoGNN problem could be viewed from two aspects: the search
space and search algorithms tailored to identify the optimal design of GNN. In the
following sections, we list the challenge details and the existing AutoGNN work.

17.1.3 Challenges in AutoGNN

The direct application of existing AutoML frameworks to automate GNN designs is
non-trivial, due to the two major challenges as follows.

First, the search space of AutoGNN is significantly different from the ones in the
AutoML literature. Taking NAS applied in discovering CNN architectures (Zoph
and Le, 2016) as an example, the search space of convolution operation is mainly

376 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

specified by the convolutional kernel size. In contrast, considering the message-
passing based graph convolution, the search space of spatial graph convolution is
constructed by multiple key architecture dimensions, including aggregation, com-
bination, and embedding activation functions. With the growing number of GNN
model variants, it is important to formulate a good search space being both ex-
pressive and compact. On the one hand, the search space should cover the impor-
tant architecture dimensions to subsume the existing human-designed architectures
and adapt to a series of diverse graph analysis tasks. On the other hand, the search
space should be compact by excluding the non-general dimensions and incorporat-
ing modest ranges of options along each dimension, in order to save the search time
cost.

Second, the search algorithm should be tailored to discover the well-performing
design efficiently based on the special search space in AutoGNN. The search con-
troller determines how to iteratively explore the search space and update the search
algorithm according to the performance feedbacks of sampled designs. A good con-
troller needs to balance the trade-off between exploration and exploitation during
the search progress, in order to avoid the premature sub-optimal region and quickly
discover the well-performing designs, respectively. However, the previous search
algorithms may be inefficient to the application of GNN-NAS. Specially, one of the
key properties in GNN architectures is that the model performance may vary sig-
nificantly with a slight modification along an architecture dimension. For example,
it has been theoretically and empirically demonstrated that the graph classification
accuracy could be improved by simply replacing the max pooling with summa-
tion in the aggregation function dimension of GNN (Xu et al, 2019d). The previ-
ous RL-based methods sample and evaluate the whole architecture at each search
step. It would be hard for the search algorithms to learn the following relationship
towards exploring better GNN: which part of the architecture dimension modifica-
tions improves or degrades the model performance. Another challenging problem is
the surge of new graph analysis tasks, which requires huge computation resources to
optimize GNN architectures. Instead of searching the optimal GNN from scratch, it
is crucial to transfer the well-performing architectures discovered before to the new
task to save the expensive computation cost.

17.2 Search Space

In this section, we summarize the search spaces in literature. As shown in Fig-
ure 17.2, the search spaces of designs in AutoGNN are differentiated according to
GNN architectures and training hyperparameters, whose details are listed as below.

17 Graph Neural Networks: AutoML 377

17.2.1 Architecture Search Space

Considering the existing AutoGNN frameworks (Gao et al, 2020b; Zhou et al,
2019a), GNN model is commonly implemented based on the spatial graph convolu-
tion mechanism. To be specific, the spatial graph convolution takes the input graph
as a computation graph and learns node embeddings by passing messages along
edges. A node embedding is updated recursively by aggregating the embedding rep-
resentations of its neighbors and combining them to the node itself. Formally, the
k-th spatial graph convolutional layer of GNN could be expressed as:

h(k)
i = AGGREGATE({a(k)

i j W (k)x(k�1)
j : j 2 N (i)}),

x(k)
i = ACT(COMBINE(W (k)x(k�1)

i ,h(k)
i)).

(17.2)

x(k)
i denotes the embedding vector of node vi at the k-th layer. N (i) denotes the set

of neighbors adjacent to node vi. W (k) denotes the trainable weight matrix used to
project node embeddings. a(k)

i j denotes the message-passing weight along edge con-
necting nodes vi and v j, which is determined by normalized graph adjacency ma-
trix or learned from attention mechanism. Function AGGREGATE, such as mean,
max, and sum pooling, is used to aggregate neighbor representations. Function
COMBINE is used to combine neighbor embedding h(k)

i as well as node embed-
ding x(k�1)

i from the last layer. Finally, function ACT (e.g., ReLU) is used to add
non-linearity to the embedding learning.

As shown in Figure 17.2, GNN architecture consists of several graph convolu-
tional layers defined in Eq. equation 17.2, and may incorporate skip connection be-
tween any two arbitrary layers similar to residual CNN (He et al, 2016a). Following
the previous definitions in NAS, we use the term “micro-architecture” to represent
a graph convolutional layer, including the specifications of hidden units and graph
convolutional functions; we use the term “macro-architecture” to represent network
topology, including the choices of layer depth, inter-layer skip connections, and
pre/post-processing layers. The architecture search space contains a large volume
of diverse GNN architectures, which could be categorized into the search spaces of
micro-architectures as well as macro-architectures.

17.2.1.1 Micro-architecture Search Space

According to Eq. equation 17.2 and as shown in Figure 17.2, the micro-architecture
of a graph convolutional layer is characterized by the following five architecture
dimensions:

• Hidden units: Trainable matrix W (k) 2 Rd(k�1)⇥d(k) maps node embeddings to
a new space and learns to extract the informative features. d(k) is the number
of hidden units and plays key role in the task performance. In the GNN-NAS

378 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

Hidden units

Propagation

Aggregation

Combination

Activation

MLP

Graph convolution

Graph convolution

Graph convolution

MLP

Pre-processing

Post-processing

Macro-architecture Search Space

Skip
connection

Micro-architecture Search Space Hyperparameter Search Space

Dropout rate

Batch normalization

Learning rate

Training epoch
Skip

connection

Skip
connection

Fig. 17.2: Illustration of a comprehensive search space, which consists of micro-
architecture, macro-architecture, and training hyperpameter search spaces. Each
space is characterized by multiple dimensions, such as hidden units, propagation
function, etc, in the micro-architecture search space. Each dimension provides a se-
ries of candidate options, and the search space is constructed by Cartesian product
of all its dimensions. A discrete point in the comprehensive search space represents
a specific design, which adopts one option at each dimension.

frameworks of GraphNAS (Gao et al, 2020b) and AGNN (Zhou et al, 2019a),
d(k) is usually selected from set {4,8,16,32,64,128,256}.

• Propagation function: It determines the message-passing weight a(k)
i j to spec-

ify how node embeddings are propagated upon the input graph structure. In
a wide variety of GNN models (Kipf and Welling, 2017b; Wu et al, 2019a;
Hamilton et al, 2017b; Ding et al, 2020a), a(k)

i j is defined by the correspond-

ing element from the normalized adjacency matrix: D̃� 1
2 ÃD̃� 1

2 or D̃�1Ã, where
Ã is the self-loop graph adjacency matrix and D̃ is its degree matrix, respec-
tively. Note that the real-world graph-structured data could be both complex
and noisy (Lee et al, 2019c), which leads to the inefficient neighbor aggregation.
GAT (Veličković et al, 2018) applies attention mechanism to compute a(k)

i j to at-
tend on relevant neighbors. Based on the existing GNN-NAS frameworks (Gao
et al, 2020b; Zhou et al, 2019a; Ding et al, 2020a), we list the common choices
of propagation functions in Table 17.1.

• Aggregation function: Depending on the input graph structure, a proper ap-
plication of aggregation function is important to learn the informative neighbor
distribution (Xu et al, 2019d). For example, a mean pooling function takes the
average of neighbors, while a max pooling only preserves the significant one.
The aggregation function is usually selected from set {SUM,MEAN,MAX}.

• Combination function: It is used to combine neighbor embedding h(k)
i and

projected embedding W (k)x(k�1)
i of the node itself. Examples of combination

17 Graph Neural Networks: AutoML 379

function include sum and multiple layer perceptron (MLP), etc. While the sum
operation simply adds the two embeddings, MLP further applies linear mapping
based upon the summation or concatenation of these two embeddings.

• Activation function: The candidate activation function is usually selected from
{Sigmoid, Tanh, ReLU, Linear, Softplus, LeakyReLU,ReLU6, ELU}.

Given the above five architecture dimensions and their associated candidate op-
tions, the micro-architecture search space is constructed by their Cartesian product.
Each discrete point in the micro-architecture search space corresponds to a concrete
micro-architecture, e.g., a graph convolutional layer with {Hidden units: 64, Propa-
gation function: GAT, aggregation function: SUM, combination function: MLP, Ac-
tivation function: ReLU}. By providing the extensive candidate options along each
dimension, the micro-architecture search space covers most of layer implementa-
tions in the state-of-the-art models, such as Chebyshev (Defferrard et al, 2016),
GCN (Kipf and Welling, 2017b), GAT (Veličković et al, 2018), and LGCN (Gao
et al, 2018a).

Table 17.1: Propagation function candidates to compute weight a(k)
i j if nodes vi and

v j are connected; otherwise a(k)
i j = 0. Symbol || denotes the concatenation operation,

a, al and ar denote trainable vectors, and W (k)
G is a trainable matrix.

Propagation Types Propagation functions Equations

Normalized adjacency
Ã 1

D̃� 1
2 ÃD̃� 1

2 1p
|N (i)||N (j)|

D̃�1Ã 1
|N (i)|

GAT LeakyReLU(a>(W (k)x(k�1)
i ||W (k)x(k�1)

j))

Attention mechanism
SYM-GAT a(k)

i j +a(k)
ji based on GAT

COS a>(W (k)x(k�1)
i ||W (k)x(k�1)

j)

LINEAR tanh(a>
l W (k)x(k�1)

i +a>
r W (k)x(k�1)

i)

GERE-LINEAR W (k)
G tanh(W (k)x(k�1)

i +W (k)x(k�1)
i)

17.2.1.2 Macro-architecture Search Space

Besides the micro-architecture, another architectural level of GNN is its macro-
architecture as shown in Figure 17.2, i.e., the network topology. The macro-architecture
of GNN specifies the numbers of graph convolutional layers as well as pre/post-
processing layers, and the choices of skip connections (You et al, 2020a; Li et al,
2018b, 2019c). We list the details of these four architecture dimensions in the fol-
lowing.

380 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

• Graph convolutional layer depth: The direct stacking of multiple layers is
commonly adopted to improve the reception fields of nodes. Let lgc denote the
number of graph convolutional layers. lgc is usually selected from range [2,10].

• Pre-processing layer depth: In real-world applications, the length of nodes’
input features may be too large and leads to costly computation in hidden fea-
ture learning. The feature pre-processing is included in search space (You et al,
2020a) for the first time and conducted by MLP, whose layer number is denoted
as lpre. lpre is sampled from candidates {0,1,2,3}.

• Post-processing layer depth: Similarly, the post-processing layers of MLP are
applied to project hidden embeddings into task-specific space, e.g., the embed-
ding space with dimensions the same as class labels in the node classification
task. Let lpost denote the layer number with examples {0,1,2,3}.

• Skip connections: Following the residual deep CNNs in computer vision and
the recent deep GNNs, skip connections have been incorporated in the search
space of GNN-NAS frameworks (You et al, 2020a; Zhao et al, 2020g,a). To
be specific, at layer l, the embeddings of up to l � 1 previous layers could be
sampled and combined to the current layer’s output, leading to 2k�1 possible
decisions at layer k. For the prior node embeddings that are connected to the
current output, there have been a series of candidate options developed to com-
bine them, namely {SUM,CAT,MAX,LSTM}. Specially, option SUM, CAT
or MAX adds, concatenates or element-wisely max pools these connected em-
beddings. LSTM uses an attention mechanism to compute the importance score
of each layer, and then obtain the weighted average of the connected embed-
dings (Xu et al, 2018a).

The entire architecture space is constructed by Cartesian product of the micro and
macro-architecture search spaces, which is totally characterized by the nine archi-
tecture dimensions. It could be extremely huge and comprehensive to subsume the
recent residual GNN models, such as JKNet (Xu et al, 2018a) and deeperGCN (Li
et al, 2018b).

17.2.2 Training Hyperparameter Search Space

The training hyperparameters have significant impacts on the task performances of
GNN architectures, and have been explored in AutoGNN frameworks (You et al,
2020a; Shi et al, 2020). We summarize four important dimensions of training hy-
perparameters in the following and show them in Figure 17.2.

• Dropout rate: At the beginning of each graph convolutional layer or pre/post-
processing layer, a proper dropout rate is crucial to avoid the over-fitting issue.
The widely-used examples are {False,0.05,0.1,0.2,0.3,0.4,0.5,0.6}.

• Batch normalization: It is applied after graph convolutional layer or pre/post-
processing layer to normalize node embeddings of the whole graph or a batch (Zhou
et al, 2020d; Zhao and Akoglu, 2019; Ioffe and Szegedy, 2015). The candidate

17 Graph Neural Networks: AutoML 381

normalization techniques include {False,BatchNorm (Io f f eandSzegedy, 2015),
PairNorm (ZhaoandAkoglu, 2019),DGN (Zhouet al, 2020d),
NodeNorm (Zhouet al, 2020c),GraphNorm (Caiet al, 2020d)}.

• Learning rate: While a larger learning rate leads to a premature suboptimal
solution, a smaller one will make the optimization process converge slowly.
The candidate learning rates are {1e-4,5e-4,1e-3,5e-3,0.01,0.1}.

• Training epoch: According to the common practice (You et al, 2020a; Kipf and
Welling, 2017b), the training epoch examples are {100,200,400,500,1000}.

17.2.3 Efficient Search Space

Given the micro-architecture, macro-architecture, and training hyperparameters
search spaces, in the practical systems, the applied search space is formulated by
Cartesian product of any combination of them. Although a large search space sub-
sumes the diverse GNN architectures and training environments to adapt to the dif-
ferent graph analysis tasks, it would be time-consuming to explore the optimal de-
sign. To make the search progress efficient, there are two mainstream simplifying
search spaces applied in the existing AutoGNN frameworks.

• Focus on GNN-NAS: Instead of fully tuning the training hyperparameters,
most of AutoGNN (or GNN-NAS) frameworks (Gao et al, 2020b; Zhou et al,
2019a; Zhao et al, 2020a,g; Ding et al, 2020a; Nunes and Pappa, 2020; Li and
King, 2020; Jiang and Balaprakash, 2020) focus on tackling the problem of dis-
covering the well-performing GNN architectures. Comparing with AutoHPT,
it is commonly acknowledged that a novel architecture discovered from GNN-
NAS is more important and challenging to the research community, which could
motivate the data scientist to improve GNN model paradigms in the future. In
GNN-NAS, the search space is thus reduced to the one containing only the neu-
ral architecture variants.

• Simplify architecture search space: Even in GNN-NAS, the plenty of archi-
tecture dimensions and their associated candidate options still make the search
space complex. Based on the prior knowledge about the impacts of different
modules on model performances, one would prefer to explore only along the
crucial architecture dimensions in the practical systems. For example, it is found
that the simplified search space (Zhao et al, 2020a) characterized by aggregation
function and skip connections could generate the high-performance GNN archi-
tectures comparable to ones from the comprehensive search spaces (Gao et al,
2020b; Zhou et al, 2019a). Specially, since the decision cardinality of skip con-
nections increases exponentially with layers, the simplified search space even
only explores the skip connections in the last layer similar to JKNet (Xu et al,
2018a). In another simplified search space, the model-specific architecture di-
mensions are excluded and pre-defined based on expert experiences, including
the hidden units, propagation function, and combination function.

382 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

17.3 Search Algorithms

Many different search strategies can be used to explore the search space in Au-
toGNN, including random search, evolutionary methods, RL, and differentiable
search methods. In this section, we will introduce the basic concepts of these search
algorithms and how to utilize them to explore candidate designs.

17.3.1 Random Search

Given a search space, random search randomly samples the various designs with
equal probability. The random search is the most basic approach, yet it is quite ef-
fective in practice. In addition to serve as a baseline in AutoGNN works (Zhou et al,
2019a; Gao et al, 2020b), random search is the standard benchmark for compar-
ing the effectiveness of different candidate options along a dimension in the search
space (You et al, 2020a). Specially, suppose the dimension to be evaluated is batch
normalization, whose candidate examples are given by {False, BatchNorm}. To
comprehensively compare the effectiveness of these two options, a series of diverse
designs are randomly sampled from the search space, where the batch normalization
is reset to False and BatchNorm in each design, respectively. Each pair of designs
(referred to Normalization=False and Normalization=BatchNorm) are compared in
terms of their model performances on a downstream graph analysis task. It is found
that the designs with Normalization=BatchNorm generally rank higher than the oth-
ers, which indicates the benefit of including BatchNorm in the model design.

17.3.2 Evolutionary Search

Evolutionary methods evolve a population of designs, i.e., the set of different GNN
architectures and training hyperparameters. In every evolution step, at least one de-
sign from the population is sampled and serves as a parent to generate a new child
design by applying mutations to it. In the context of AutoGNN, the design muta-
tions are local operations, such as changing the aggregation function from MAX to
SUM, altering the hidden units, and altering a specific training hyperparameter. Af-
ter training the child design, its performance is evaluated on the validation set. The
superior design will be added to the population. Specifically, Shi et al (2020) pro-
poses to select two parent designs and then crossover them along some dimensions.
To generate the diverse child designs, Shi et al (2020) further mutates the above
crossover designs.

17 Graph Neural Networks: AutoML 383

17.3.3 Reinforcement Learning Based Search

RL (Silver et al, 2014; Sutton and Barto, 2018) is a learning paradigm concerned
with how agents ought to take actions in an environment to maximize the reward.
In the context of AutoGNN, the agent is the so-called “controller”, which tries to
generate promising designs. The generation of design can be regarded as the con-
troller’s action. The controller’s reward is often defined as the model performance
of generated design on the validation set, such as validation accuracy for the node
classification task. The controller is trained in a loop as shown in Figure 17.3: the
controller first samples a candidate design and trains it to convergence to measure
its performance on the task of desire. Note that the controller is usually realized by
RNN, which generates the design of GNN architecture and training hyperparam-
eters as a string of variable strength. The controller then uses the performance as
a guiding signal to update itself toward finding the more promising design in the
future search progress.

(l-
1)

th
 G

ra
ph

Co

nv

SY
M

-G
AT

pr

op
ag

at
io

n

SU
M

ag

gr
eg

at
io

n

M
LP

co

m
bi

na
tio

n

(l+
1)

th
 G

ra
ph

Co

nv

layer l-1 layer l layer l+1

Comb Agg Prop

Prop Agg Comb Comb

Comb Prop

Agg

SUM SYM-GAT SUM MLP GAT

Fe
ed
ba
ck
G
enerate

Fig. 17.3: A illustration of reinforcement learning based search algorithm. The con-
troller (upper block) generates a GNN architecture (lower block) and tests it on the
validation dataset. By treating the architecture as a string with variable length, the
controller usually applies RNN to sequentially sample options in the different di-
mensions (e.g., combination, aggregation, and propagation functions) to formulate
the final GNN architecture. The validation performance is then used as feedback to
train the controller. Note that the architecture dimensions here are just used for the
illustration purpose. Please refer to Section 17.2 for a complete introduction of the
search space.

384 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

The existing RL-based AutoGNN frameworks target at the sub-field problem
of GNN-NAS. Generally, in RL-based GNN-NAS, there are two sets of trainable
parameters: the parameters of the controller, denoted by w , and the parameters of a
GNN architecture, denoted by q . The training procedure consists of two interleaving
phases, which alternatively solves the bi-level optimization problem as shown in
Eq. equation 17.1. The first phase trains q on the training data set Dtrain with a fixed
number of epochs using standard back-propagation. The second phase trains w to
learn to sample high-performance GNN architectures evaluated on the validation
set Dvalid . These two phases are alternated during the training. Specifically, in the
first phase, the controller proposes a GNN architecture f and performs gradient
descent on q to minimize the loss function L (f (q);Dtrain), which is computed on
the batches of training data. In the second phase, the optimized parameter q ⇤ is fixed
to update the controller parameters w , aiming to maximize the expected reward:

w⇤ = argmaxw E f ⇠p(f ;w)[R(f (q ⇤);Dvalid)]. (17.3)

Here, p(f ;w) is the controller’s policy parameterized by w to sample and generate
GNN architecture f . The reward R(f (q ⇤);Dvalid) is the model performance defined
by the task of desire, such as the accuracy for the node classification task. Further-
more, the reward is computed on the validation set, rather than on the training set,
to encourage the controller to select architectures that generalize well. In most of
the existing work, the gradient of the expected reward E f ⇠p(f ;w)[R(f (q ⇤);Dvalid)]
with respect to w is computed using REINFORCE rule (Sutton et al, 2000).

Considering GNN-NAS efforts in literature, RL-based search algorithms differ
in how they represent and train the controller. GraphNAS uses an RNN controller to
sequentially sample from the multiple architecture dimensions and generate a string
that encodes a GNN architecture (Gao et al, 2020b). Based on the expected reward
signaling the quality of the whole architecture, the RNN controller has to optimize
the sampling policies along all the dimensions. AGNN (Zhou et al, 2019a) is moti-
vated by an observation that the minor modification to an architecture dimension can
lead to abrupt change in performance. For example, the graph classification accuracy
of GNN may be significantly improved by only changing the choice of aggregation
function from MAX to SUM (Xu et al, 2019d). Based on this observation, AGNN
proposes a more efficient controller consisted of a series of RNN sub-controllers,
each corresponding to an independent architecture dimension. At each step, AGNN
only applies one of the RNN sub-controllers to sample new options from the cor-
responding dimension, and uses these options to mutate the best architecture found
so far. By evaluating such a slightly-mutated design, the RNN sub-controller can
exclude the noises generated from the other architecture dimension modifications,
and better trains the sampling policy of its own dimension.

17 Graph Neural Networks: AutoML 385

17.3.4 Differentiable Search

There are several candidate options along each architecture dimension. For exam-
ple, for the aggregation function at a particular layer, we have the option of apply-
ing either a SUM, a MEAN, or a MAX pooling. The common search approaches in
GNN-NAS, such as random search, evolutionary algorithms, and RL-based search
methods, treat selecting the best option as a black-box optimization problem over
a discrete domain. At each search step, they sample and evaluate a single architec-
ture from the discrete architecture search space. However, such the search process
towards well-performing GNNs will be very time-consuming since the number of
possible models is extremely large. Differentiable search algorithms relax the dis-
crete search space to be continuous, which can be optimized efficiently by gradient
descent. Specifically, for each architecture dimension, the differentiable search al-
gorithms usually relax the hard choice from the candidate set into a continuous dis-
tribution, where each option is assigned with a probability. One example for illus-
trating the differentiable search along the aggregation function dimension is shown
in Figure 17.4. At the k-th layer, the node embedding output of aggregation function
can be decomposed and expressed as:

h(k)
i =

8
><

>:

Âm amom(x(k�1)
j : j 2 N (i)[{i}),

or
amom(x(k�1)

j : j 2 N (i)[{i}), m ⇠ p(am),

s.t. Â
m

am = 1.

(17.4)

om represents the m-th aggregation function option, and am is the sampling prob-
ability associated with the corresponding option. The probability distribution along
a dimension is regularized to have the sum of one. The architecture distribution is
then formulated by the union probability distribution of all the dimensions. At each
search step, as shown in Eq.equation 17.4 (with the example of the aggregation
function dimension), the real operation of a dimension in a new architecture could
be generated by two different ways: weighted option combination and option sam-
pling. For the case of weighted option combination, the real operation is represented
by the weighted average of all candidate options. For the other case, the real opera-
tion is instead sampled from the probability distribution p(am) of the corresponding
architecture dimension. In both cases, the adopted options are scaled by their sam-
pling probabilities to support the architecture distribution optimization by gradient
descent. The architecture distribution is then updated directly by backpropagating
the training loss at each training step. During the testing, the discrete architecture
can be obtained by retaining the strongest candidate with the highest probability am
along each dimension. In contrast to black-box optimization, gradient-based opti-
mization is significantly more data efficient, and hence greatly speeds up the search
process.

386 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

Fig. 17.4: One example for illustrating the differentiable search for the aggregation
function. At a search step, the aggregation function is given by the weighted combi-
nation of the three candidates, or instead realized by one sampled option (e.g., MAX
scaled with probability a2). Once the search progress terminates, the option with the
highest probability (e.g., MAX with solid arrow) is used in the final architecture to
be evaluated on testing set.

Compared with RL-based search, differentiable search based algorithm is less
popular in the GNN-NAS literature. PDNAS (Zhao et al, 2020g) relaxes the discrete
search space into a continuous one by employing the Gumbel-sigmoid, enabling op-
timization via gradient descent. POSE focuses on searching the propagation func-
tion, whose discrete search space is relaxed by a softmax approximation.

17.3.5 Efficient Performance Estimation

To solve the bi-level optimization problem of AutoGNN, all the above search al-
gorithms share a common two-stage working pipeline: sampling a new design and
adjusting the search algorithm based on the performance estimation of the new de-
sign at each step. Once the search progress terminates, the optimal design with the
highest model performance will be treated as the desired solution to the concerned
optimization problem. Therefore, an accurate performance estimation strategy is
crucial to AutoGNN framework. The simplest way of performance estimation is to
perform a standard training for each generated design, and then obtain the model
performance on the split validation set. However, such an intuitive strategy is com-
putationally expensive given the long search progress and massive graph datasets.

Parameter sharing is one of the efficient strategies to reduce the cost of perfor-
mance estimation, which avoids training from scratch for each design. Parameter
sharing is first proposed in ENAS (Pham et al, 2018) to force all designs to share
weights to improve efficiency. A new design could be immediately estimated by
reusing the weights well trained before. However, such a strategy cannot be di-
rectly adopted in GNN-NAS since the GNN architectures in search space may have
weights with different dimensions or shapes. To tackle the challenge, recent work

17 Graph Neural Networks: AutoML 387

modified the parameter sharing strategy to customize for GNNs. GraphNAS (Gao
et al, 2020b) categorizes and stores the optimized weights based on their shapes,
and applies the one with the same shape to the new design. After parameter shar-
ing, AGNN (Zhou et al, 2019a) further uses a few training epochs to fully adapt the
transferred weights to the new design. In the differentiable GNN-NAS frameworks,
the parameter sharing is conducted naturally between GNN architectures sharing
the common computation options (Zhao et al, 2020g; Ding et al, 2020a).

17.4 Future Directions

We have reviewed various search spaces and search algorithms. Although some ini-
tial AutoGNN efforts have been paid, compared with the rapid development of Au-
toML in computer vision, AutoGNN is still in the preliminary research stage. In this
section, we discuss several future directions, especially for research on GNN-NAS.

• Search space. The design of architecture search space is the most important
portion in GNN-NAS framework. An appropriate search space should be com-
prehensive by covering the key architecture dimensions and their state-of-the-
art primitive options to guarantee the performance of searched architecture for
any given task. Besides, the search space should be compact by incorporating
a moderate number of powerful options to make the search progress efficient.
However, most of the existing architecture search spaces are constructed based
on vanilla GCN and GAT, failing to consider the recent GNN developments. For
example, graph pooling (Ying et al, 2018c; Gao and Ji, 2019; Lee et al, 2019b;
Zhou et al, 2020e) has attracted increasing research interests to enable encoding
the graph structures hierarchically. Based on the wide variety of pooling algo-
rithms, the corresponding hierarchical GNN architectures gradually shrink the
graph size and enhance the neighborhood reception field, empirically improving
the downstream graph analysis tasks. Furthermore, a series of novel graph con-
volution mechanisms have been proposed from different perspectives, such as
neighbor-sampling methods to accelerate computation (Hamilton et al, 2017b;
Chen et al, 2018c; Zeng et al, 2020a), and PageRank based graph convolutions
to extend neighborhood size (Klicpera et al, 2019a,a; Bojchevski et al, 2020b).
With the development in GNN community, it is crucial to update the search
space to subsume the state-of-the-art models.

• Deep graph neural networks. All the existing search spaces are implemented
with shallow GNN architectures, i.e., the number of graph convolutional lay-
ers lgc 10. Unlike the widely adopted deep neural networks (e.g., CNNs and
transformers) in computer vision and natural language processing, GNN archi-
tectures are usually limited with less than 3 layers (Kipf and Welling, 2017b;
Veličković et al, 2018). As the layer number increases, the node representations
will converge to indistinguishable vectors due to the recursive neighborhood
aggregation and non-linear activation (Li et al, 2018b; Oono and Suzuki, 2020).
Such phenomenon is recognized as the over-smoothing issue (NT and Maehara,

388 Kaixiong Zhou, Zirui Liu, Keyu Duan and Xia Hu

2019), which prevents the construction of deep GNNs from modeling the de-
pendencies to high-order neighbors. Recently, many efforts have been proposed
to relieve the over-smoothing issue and construct deep GNNs, including em-
bedding normalization (Zhao and Akoglu, 2019; Zhou et al, 2020d; Ioffe and
Szegedy, 2015), residual connection (Li et al, 2019c, 2018b; Chen et al, 2020l;
Klicpera et al, 2019a), and random data augmentation (Rong et al, 2020b; Feng
et al, 2020). However, most of them only achieve comparable or even worse
performance compared to their corresponding shallow models. By incorporat-
ing these new techniques into the search space, GNN-NAS could effectively
combine them and identify the novel deep GNN model, which unleashes the
deep learning power for graph analytics.

• Applications to emerging graph analysis tasks. One limitation of GNN-NAS
frameworks in literature is that they are usually evaluated on a few bench-
mark datasets, such as Cora, Citeseer, and Pubmed for node classification (Yang
et al, 2016b). However, the graph-structured data is ubiquitous, and the novel
graph analysis tasks are always emerging in real-world applications, such as
property prediction of biochemical molecules (i.e., graph classification) (Zitnik
and Leskovec, 2017; Aynaz Taheri, 2018; Gilmer et al, 2017; Jiang and Bal-
aprakash, 2020), item/friend recommendation in social networks (i.e., link pre-
diction) (Ying et al, 2018b; Monti et al, 2017; He et al, 2020), and circuit design
(i.e., graph generation) (Wang et al, 2020b; Li et al, 2020h; Zhang et al, 2019d).
The surge of novel tasks poses significant challenges for the future search of
well-performing architectures in GNN-NAS, due to the diverse data character-
istics and objectives of tasks and the expensive searching cost. On one hand,
since the new tasks may do not resemble any of the existing benchmarks, the
search space has to be re-constructed by considering their specific data charac-
teristics. For example, in the knowledge graph with informative edge attributes,
the micro-architecture search space needs to incorporate edge-aware graph con-
volutional layers to guarantee a desired model performance (Schlichtkrull et al,
2018; Shang et al, 2019). On the other hand, if the new tasks are similar to the
existing ones, the search algorithms could re-exploit the best architectures dis-
covered before to accelerate the search progress in the new tasks. For example,
one can simply initialize the search progress with these sophisticated archi-
tectures and uses several epochs to explore the potentially good ones within a
small region. Especially for the massive graphs with a large volume of nodes
and edges, the reuse of well-performing architectures from similar tasks could
significantly save the computation cost. The research challenge is how to quan-
tify the similarities between the different graph-structured data.

17 Graph Neural Networks: AutoML 389

Acknowledgements

This work is, in part, supported by NSF (#IIS-1750074 and #IIS-1718840). The
views, opinions, and/or findings contained in this paper are those of the authors and
should not be interpreted as representing any funding agencies.

Editor’s Notes: Automated graph neural networks introduce automated
machine learning to tackle the problem of GNN neural architecture search
and hyperparameter search. Hence, this chapter is orthogonal to most of the
other chapters in this book, which generally depend on expert experience
to design specific models and tune hyperparameters. Neural architecture
search space contains the components of manually designed models, such
as kinds of aggregators introduced in chapter 4 and chapter 5. Automated
graph neural networks support common graph analysis tasks, such as node
classification (chapter 4), graph classification (chapter 9), and link predic-
tion (chapter 10).

