
Chapter 16
Heterogeneous Graph Neural Networks

Chuan Shi

Abstract Heterogeneous graphs (HGs) also called heterogeneous information net-
works (HINs) have become ubiquitous in real-world scenarios. Recently, employing
graph neural networks (GNNs) to heterogeneous graphs, known as heterogeneous
graph neural networks (HGNNs) which aim to learn embedding in low-dimensional
space while preserving heterogeneous structure and semantic for downstream tasks,
has drawn considerable attention. This chapter will first give a brief review of the
recent development on HG embedding, then introduce typical methods from the
perspective of shallow and deep models, especially HGNNs. Finally, it will point
out future research directions for HGNNs.

16.1 Introduction to HGNNs

Heterogeneous graphs (HGs) (Sun and Han, 2013), which compose different types
of entities and relations, also known as heterogeneous information networks (HINs),
are ubiquitous in real-world scenarios, ranging from bibliographic networks, social
networks to recommender systems. For example, as shown in Fig. 16.1 (a), a biblio-
graphic network can be represented by a HG, which consists of four types of entities
(author, paper, venue, and term) and three types of relations (author-write-paper,
paper-contain-term and conference-publish-paper); and these basic relations can be
further derived for more complex semantics (e.g., author-write-paper-contain-item).
It has been well recognized that HG is a powerful model that embraces rich seman-
tic and structural information. Therefore, researches on HG have been experiencing
tremendous growth in data mining and machine learning, many of which have suc-
cessful applications such as recommendation (Shi et al, 2018a; Hu et al, 2018a), text

Chuan Shi
School of Computer Science, Beijing University of Posts and Telecommunications, e-mail:
shichuan@bupt.edu.cn

351

shichuan@bupt.edu.cn

352 Chuan Shi

analysis (Linmei et al, 2019; Hu et al, 2020a), and cybersecurity (Hu et al, 2019b;
Hou et al, 2017).

Due to the ubiquity of HGs, how to learn embedding of HGs is a key re-
search problem in various graph analysis applications, e.g., node/graph classifica-
tion (Dong et al, 2017; Fu et al, 2017), and node clustering (Li et al, 2019g). Tradi-
tionally, matrix factorization methods (Newman, 2006b) generate latent features in
HGs. However, the computational cost of decomposing a large-scale matrix is usu-
ally very expensive, and also suffers from its statistical performance drawback (Shi
et al, 2016; Cui et al, 2018). To address this challenge, heterogeneous graph embed-
ding, aiming to learn a function that maps input space into lower-dimensional space
while preserving heterogeneous structure and semantic, has drawn considerable at-
tention in recent years.

Although there have been ample studies of embedding technology on homoge-
neous graphs (Cui et al, 2018) which consist of only one type of nodes and edges,
these techniques cannot be directly applicable to HGs due to heterogeneity. Specif-
ically, (1) the structure in HGs is usually semantic dependent, e.g., meta-path struc-
ture (Dong et al, 2017) can be very different when considering different types of
relations; (2) different types of nodes and edges have different attributes located in
different feature spaces; (3) HGs are usually application dependent, which may need
sufficient domain knowledge for meta-path/meta-graph selection.

To tackle the above issues, various HG embedding methods have been proposed
(Chen et al, 2018b; Hu et al, 2019a; Dong et al, 2017; Fu et al, 2017; Wang et al,
2019m; Shi et al, 2018a; Wang et al, 2020n). From the technical perspective, we
divide the widely used models in HG embedding into two categories: shallow mod-
els and deep models. In summary, shallow models initialize the node embeddings
randomly, then learn the node embeddings through optimizing some well-designed
objective functions to preserve heterogeneous structures and semantics. Deep model
aims to use deep neural networks (DNNs) to learn embedding from node attributes
or interactions, where heterogeneous graph neural networks (HGNNs) stand out and
will be the focus of this chapter. And there have demonstrated the success of HG
embedding techniques deployed in real-world applications including recommender
systems (Shi et al, 2018a; Hu et al, 2018a; Wang et al, 2020n), malware detection
systems (Hou et al, 2017; Fan et al, 2018; Ye et al, 2019a), and healthcare systems
(Cao et al, 2020; Hosseini et al, 2018).

The remainder of this chapter is organized as follows. In Sect. 27.1, we first
introduce basic concepts in HGs, then discuss unique challenges of HG embedding
due to the heterogeneity and give a brief review of the recent development on HG
embedding. In Sect. 24.2 and 20.3, we categorize and introduce HG embedding in
details according to the shallow and deep models. In Sect. 20.4, we further review
pros and cons of the models introduced above. Finally, Sect. 20.5 forecasts the future
research directions for HGNNs.

16 Heterogeneous Graph Neural Networks 353

(a) An example of HIN (c) Meta-path

(b) Network Schema (d) Meta-graph

Author Paper Venue Term

Publish
Contain
Write APA APCPA

Fig. 16.1: An illustrative example of a heterogeneous graph (Wang et al, 2020l).
(a) A bibliographic graph including four types of entities (i.e., author, paper, venue
and term) and three types of relations (i.e., publish, contain and write). (b) Network
schema of the bibliographic graph. (c) Two meta-paths (i.e., author-paper-author
and paper-term-paper). (d) A meta-graph used in the bibliographic graph.

16.1.1 Basic Concepts of Heterogeneous Graphs

In this section, we will first formally introduce basic concepts in HGs and illustrate
the symbols used throughout this chapter. HG is a graph consisting of different types
of entities (i.e., nodes) and/or different types of relations (i.e., edges), which can be
defined as follows.

Definition 16.1. Heterogeneous Graph (or Heterogeneous Information Network)
(Sun and Han, 2013). A HG is defined as a graph G = {V ,E }, in which V and
E represent the node set and the edge set, respectively. Each node v 2 V and
each edge e 2 E are associated with their mapping function f(v) : V ! A and
j(e) : E !R. A and R denote the node type set and edge type set, respectively,
where |A |+ |R| > 2. The network schema for G is defined as S = (A ,R), which
can be seen as a meta template of a heterogeneous graph G = {V ,E } with the
node type mapping function f(v) : V ! A and the edge type mapping function
j(e) : E ! R. The network schema is a graph defined over node types A , with
edges as relation types from R.

HG not only provides graph structure of data association, but also portrays
higher-level semantics. An example of HG is illustrated in Fig. 16.1 (a), which
consists of four node types (author, paper, venue, and term) and three edge types
(author-write-paper, paper-contain-term, and conference-publish-paper), and Fig.
16.1 (b) illustrates the network schema. To formulate semantics of higher-order re-
lationships among entities, meta-path (Sun et al, 2011) is further proposed whose
definition is given below.

Definition 16.2. Meta-path (Sun et al, 2011). A meta-path p is based on network
schema S , which is denoted as p = N1

R1�! N2
R2�! · · · Rl�! Nl+1 (simplified to

354 Chuan Shi

N1N2 · · ·Nl+1) with node types N1,N2, · · · ,Nl+1 2N and edge types R1,R2, · · ·Rl 2
R.

Note that different meta-paths describe semantic relationships in different views.
For example, the meta-path APA indicates the co-author relationship and APCPA
represents the co-conference relation. Both of them can be used to formulate the
relatedness over authors. Although meta-path can be used to depict the relatedness
over entities, it fails to capture a more complex relationship, such as motifs (Milo
et al, 2002). To address this challenge, meta-graph (Huang et al, 2016b) is proposed
to use a directed acyclic graph of entity and relation types to capture more complex
relationships between entities, defined as follows.

Definition 16.3. Meta-graph (Huang et al, 2016b). A meta-graph T can be seen
as a directed acyclic graph (DAG) composed of multiple meta-paths with common
nodes. Formally, meta-graph is defined as T = (VT ,ET), where VT is a set of
nodes and ET is a set of edges. For any node v 2 VT ,f(v) 2 A ; for any edge
e 2 ET ,j(e) 2R.

An example meta-graph is shown in Fig. 16.1 (d), which can be regarded as
the combination of meta-path APA and APCPA, reflecting high-order similarity of
two nodes. Note that a meta-graph can be symmetric or asymmetric (Zhang et al,
2020g). To learn embeddings of HG, we formalize the problem of heterogeneous
graph embedding.

Definition 16.4. Heterogeneous Graph Embedding (Shi et al, 2016). Heteroge-
neous graph embedding aims to learn a function F : V !Rd that embeds the nodes
v 2 V in HG into low-dimensional Euclidean space with d⌧ |V |.

16.1.2 Challenges of HG Embedding

Different from homogeneous graph embedding (Cui et al, 2018), where the basic
problem is preserving structure and property in node embedding (Cui et al, 2018).
Due to the heterogeneity, HG embedding imposes more challenges, which are illus-
trated below.

Complex Structure (the complex HG structure caused by multiple types of
nodes and edges). In a homogeneous graph, the fundamental structure can be con-
sidered as first-order, second-order, and even higher-order structures (Tang et al,
2015b). All these structures are well defined and have good intuition. However, the
structure in HGs will dramatically change depending on the selected relations. Let’s
still take the academic graph in Fig. 16.1 (a) as an example, the neighbors of one
paper will be authors with the “write” relation; while with “contain” relation, the
neighbors become terms. Complicating things further, the combination of these re-
lations, which can be considered as higher-order structures in HGs, will result in
different and more complicated structures. Therefore, how to efficiently and effec-
tively preserve these complex structures is of great challenge in HG embedding,

16 Heterogeneous Graph Neural Networks 355

Fig. 16.2: Heterogeneous graph embedding tree classification diagram.

while current efforts have been made towards the meta-path structure (Dong et al,
2017) and meta-graph structure (Zhang et al, 2018b).

Heterogeneous Attributes (the fusion problem caused by the heterogeneity of
attributes). Since nodes and edges in a homogeneous graph have the same type, each
dimension of the node or edge attributes has the same meaning. In this situation,
node can directly fuse attributes of its neighbors. However, in HGs, the attributes
of different types of nodes and edges may have different meanings (Zhang et al,
2019b; Wang et al, 2019m). For example, the attributes of author can be research
fields, while paper may use keywords as attributes. Therefore, how to overcome
the heterogeneity of attributes and effectively fuse the attributes of neighbors poses
another challenge in HG embedding.

Application Dependent. HG is closely related to the real-world applications,
while many practical problems remain unsolved. For example, constructing an ap-
propriate HG may require sufficient domain knowledge in a real-world application.
Also, meta-path and/or meta-graph are widely used to capture the structure of HGs.
However, unlike homogeneous graph, where the structure (e.g., the first-order and
second-order structure) is well defined, meta-path selection may also need prior
knowledge. Furthermore, to better facilitate the real-world applications, we usu-
ally need to elaborately encode side information (e.g., node attributes) (Wang et al,
2019m; Zhang et al, 2019b) or more advanced domain knowledge (Shi et al, 2018a;
Chen and Sun, 2017) to HG embedding process.

16.1.3 Brief Overview of Current Development

Most of early works on graph data are based on high-dimensional sparse vectors
for matrix analysis. However, the sparsity of the graph in reality and its growing
scale have created serious challenges for such methods. A more effective way is
to map nodes to latent space and use low-dimensional vectors to represent them.
Therefore, they can be more flexibly applied to different data mining tasks, i.e.,
graph embedding.

There has been a lot of works dedicated to homogeneous graph embedding (Cui
et al, 2018). These works are mainly based on deep models and combined with graph
properties to learn embeddings of nodes or edges. For instance, DeepWalk (Perozzi

356 Chuan Shi

et al, 2014) combines random walk and skip-gram model; LINE (Tang et al, 2015b)
utilizes first-order and second-order similarity to learn distinguished node embed-
ding for large-scale graphs; SDNE (Wang et al, 2016) uses deep auto-encoders to
extract non-linear characteristics of graph structure. In addition to structural infor-
mation, many methods further use the content of nodes or other auxiliary informa-
tion (such as text, images, and tags) to learn more accurate and meaningful node
embeddings. Some survey papers comprehensively summarize the work in this area
(Cui et al, 2018; Hamilton et al, 2017c).

Due to the heterogeneity, embedding techniques for homogeneous graphs can-
not be directly applicable to HGs. Therefore, researchers have begun to explore
HG embedding methods, which emerge in recent years but develop rapidly. From
the technical perspective, we summarize the widely used techniques (or models) in
HG embedding, which can be generally divided into two categories: shallow mod-
els and deep models, as shown in Fig. 16.2. Specifically, shallows model mainly
rely on meta-paths to simplify the complex structure of HGs, which can be classi-
fied into decomposition-based and random walk-based. Decomposition-based tech-
niques Chen et al (2018b); Xu et al (2017b); Shi et al (2018b,c); Matsuno and Mu-
rata (2018); Tang et al (2015a); Gui et al (2016) decompose complex heteroge-
neous structure into several simpler homogeneous structures; while random walk-
based (Dong et al, 2017; Hussein et al, 2018) methods utilize meta-path-guided ran-
dom walk to preserve specific first-order and high-order structures. In order to take
full advantage of heterogeneous structures and attributes, deep models are three-
fold: message passing-based (HGNNs), encoder-decoder-based and adversarial-
based methods. Message passing mechanism, i.e., the core idea of graph neural net-
works (GNNs), seamlessly integrates structure and attribute information. HGNNs
inherit the message passing mechanism and design suitable aggregation functions
to capture rich semantic in HGs (Wang et al, 2019m; Fu et al, 2020; Hong et al,
2020b; Zhang et al, 2019b; Cen et al, 2019; Zhao et al, 2020b; Zhu et al, 2019d;
Schlichtkrull et al, 2018). The remaining encoder-decoder-based (Tu et al, 2018;
Chang et al, 2015; Zhang et al, 2019c; Chen and Sun, 2017) and adversarial-based
(Hu et al, 2018a; Zhao et al, 2020c) techniques employ encoder-decoder framework
or adversarial learning to preserve complex attribute and structural information of
HGs. In the following sections, we will introduce representative works of their sub-
categories in detail and compare their pros and cons.

16.2 Shallow Models

Early HG embedding methods focus on employing shallow models. They first ini-
tialize node embeddings randomly, then learn node embeddings through optimizing
some well-designed objective functions. We divide the shallow model into two cat-
egories: decomposition-based and random walk-based.

16 Heterogeneous Graph Neural Networks 357

Fig. 16.3: An illustrative example of the proposed meta-path-guided random walk
in HERec (Shi et al, 2018a). HERec first perform random walks guided by some
selected meta-paths, then filter node sequences not with the user type or item type.

16.2.1 Decomposition-based Methods

To cope with the challenges brought by heterogeneity, decomposition-based tech-
niques (Chen et al, 2018b; Xu et al, 2017b; Shi et al, 2018b,c; Matsuno and Murata,
2018; Tang et al, 2015a; Gui et al, 2016) decompose HG into several simpler sub-
graphs and preserve the proximity of nodes in each sub-graph, finally merge the
information to achieve the effect of divide and conquer.

Specifically, HERec (Shi et al, 2018a) aims to learn embeddings of users and
items under different meta-paths and fuses them for recommendation. It first finds
the co-occurrence of users and items based on the meta-path-guided random walks
on user-item HG, as shown in Fig. 16.3. Then it uses node2vec (Grover and
Leskovec, 2016) to learn preliminary embeddings from the co-occurrence sequences
of users and items. Because embeddings under different meta-paths contain differ-
ent semantic information, for better recommendation performance, HERec designs
a fusion function to unify the multiple embeddings:

g(hp
u) =

1
|P|

P

Â
p=1

(W php
u +bp), (16.1)

where hp
u is the embedding of user node u in meta-path p. P denotes the set of meta-

paths. The fusion of item embeddings is similar to users. Finally, a prediction layer
is used to predict the items that users prefer. HERec optimizes the graph embedding
and recommendation objective jointly.

As another example, EOE is proposed to learn embeddings for coupled HGs,
which consist of two different but related subgraphs. It divides the edges in HG
into intra-graph edges and inter-graph edges. Intra-graph edge connects two nodes
with the same type, and inter-graph edge connects two nodes with different types.
To capture the heterogeneity in inter-graph edge, EOE (Xu et al, 2017b) uses the
relation-specific matrix Mr to calculate the similarity between two nodes, which can
be formulated as:

358 Chuan Shi

Fig. 16.4 The architecture
of metapath2vec (Dong et al,
2017). Node sequence is
generated under the meta-
path PAP. It projects the
embedding of the center node,
e.g., p2 into latent space and
maximizes the probability of
its meta-path-based context
nodes, e.g., p1, p3, a1 and a2,
appearing.

	"!
	#!
	""
	#"
	"#

Input

CenterNode

Project Output

Prob. that 	"! appears

Prob. that 	"" appears

Sr(vi,v j) =
1

1+ exp
�
�h>i Mrh j

 . (16.2)

Similarly, PME (Chen et al, 2018b) decomposes HG into some bipartite graphs
according to the types of edges and projects each bipartite graph into a relation-
specific semantic space. PTE (Tang et al, 2015a) divides the documents into word-
word graph, word-document graph and word-label graph. Then it uses LINE (Tang
et al, 2015b) to learn the shared node embeddings for each sub-graph. HEBE (Gui
et al, 2016) samples a series of subgraphs from a HG and preserves the proximity
between the center node and its subgraph.

The above-mentioned two-step framework of decomposition and fusion, as a
transition product from homogeneous networks to HGs, is often used in the early
attempt of HG embedding. Later, researchers gradually realized that extracting ho-
mogeneous graphs from HGs would irreversibly lose information carried by hetero-
geneous neighbors, and began to explore HG embedding methods that truly adapted
to heterogeneous structure.

16.2.2 Random Walk-based Methods

Random walk, which generates some node sequences in a graph, is often used to
describe the reachability between nodes. Therefore, it is widely used in graph rep-
resentation learning to sample neighbor relationships of nodes and capture local
structure in the graph (Grover and Leskovec, 2016). In homogeneous graphs, the
node type is single and random walk can walk along any path. While in HGs, due to
the type constraints of nodes and edges, meta-path-guided random walk is usually
adopted, so that the generated node sequence contains not only the structural infor-
mation, but also the semantic information. Through preserving the node sequence
structure, node embedding can preserve both first-order and high-order proximity
(Dong et al, 2017). A representative work is metapath2vec (Dong et al, 2017), which
uses meta-path-guided random walk to capture semantic information of two nodes,
e.g., the co-author relationship in academic graph as shown in Fig. 16.4.

Metapath2vec (Dong et al, 2017) mainly uses meta-path-guided random walk to
generate heterogeneous node sequences with rich semantic, then it designs a het-

16 Heterogeneous Graph Neural Networks 359

erogeneous skip-gram technique to preserve the proximity between node v and its
context nodes, i.e., neighbors in the random walk sequences:

argmax
q Â

v2V
Â

t2N
Â

ct2Ct (v)
log p(ct |v;q), (16.3)

where Ct(v) represents the context nodes of node v with type t. p(ct |v;q) denotes
the heterogeneous similarity function on node v and its context neighbors ct :

p(ct |v;q) =
ehct ·hv

Âṽ2V ehṽ·hv
. (16.4)

From the diagram shown in Fig. 16.4, Eq. (16.4) needs to calculate similarity
between center node and its neighbors. Then Mikolov et al (2013b) introduces a
negative sampling strategy to reduce the computation. Hence, Eq. (16.4) can be
approximated as:

logs(hct ·hv)+
Q

Â
q=1

Eṽq⇠P(ṽ) [logs (�hṽq ·hv)] , (16.5)

where s(·) is the sigmoid function, and P(ṽ) is the distribution in which the negative
node ṽq is sampled for Q times. Through the strategy of negative sampling, the
time complexity is greatly reduced. However, when choosing the negative samples,
metapath2vec does not consider the types of nodes, i.e., different types of nodes
are from the same distribution P(ṽ). Thus it further designs metapath2vec++, which
samples negative nodes of the same type as the central node, i.e., ṽq

t ⇠ P(ṽt). The
formulation can be rewritten as:

logs(hct ·hv)+
Q

Â
q=1

Eṽq
t ⇠P(ṽt)

h
logs

⇣
�hṽq

t
·hv

⌘i
. (16.6)

After minimizing the objective function, metapath2vec and metapath2vec++ can
capture both structural information and semantic information effectively and effi-
ciently.

Based on metapath2vec, a series of variants have been proposed. Spacey (He
et al, 2019) designs a heterogeneous spacey random walk to unify different meta-
paths with a second-order hyper-matrix to control transition probability among dif-
ferent node types. JUST (Hussein et al, 2018) proposes a random walk method with
Jump and Stay strategies, which can flexibly choose to change or maintain the type
of the next node in the random walk without meta-path. BHIN2vec (Lee et al, 2019e)
proposes an extended skip-gram technique to balance the various types of relations.
It treats heterogeneous graph embedding as multiple relation-based tasks, and bal-
ances the influence of different relations on node embeddings by adjusting the train-
ing ratio of different tasks. HHNE (Wang et al, 2019n) conducts meta-path-guided
random walk in hyperbolic space (Helgason, 1979), where the similarity between
nodes can be measured using hyperbolic distance. In this way, some properties of

360 Chuan Shi

HGs, e.g., hierarchical and power-law structure, can be naturally reflected in learned
node embeddings.

16.3 Deep Models

In recent years, deep neural networks (DNNs) have achieved great success in the
fields of computer vision and natural language processing. Some works have also
begun to use deep models to learn embedding from node attributes or interactions
among nodes in HGs. Compared with shallow models, deep models can better cap-
ture the non-linear relationship, which can be roughly divided into three categories:
message passing-based, encoder-decoder-based and adversarial-based.

16.3.1 Message Passing-based Methods (HGNNs)

Graph neural networks (GNNs) have emerged recently. Its core idea is the message
passing mechanism, which aggregates neighborhood information and transmits it as
messages to neighbor nodes. Different from GNNs that can directly fuse attributes
of neighbors to update node embeddings, due to different types of nodes and edges,
HGNNs need to overcome the heterogeneity of attributes and design effective fusion
methods to utilize neighborhood information. Therefore, the key component is to
design a suitable aggregation function, which can capture semantic and structural
information of HGs (Wang et al, 2019m; Fu et al, 2020; Hong et al, 2020b; Zhang
et al, 2019b; Cen et al, 2019; Zhao et al, 2020b; Zhu et al, 2019d; Schlichtkrull et al,
2018).

Unsupervised HGNNs. Unsupervised HGNNs aim to learn node embeddings
with good generalization. To this end, they always utilize interactions among dif-
ferent types of attributes to capture the potential commonalities. HetGNN (Zhang
et al, 2019b) is the representative work of unsupervised HGNNs. It consists of three
parts: content aggregation, neighbor aggregation, and type aggregation. Content ag-
gregation is designed to learn fused embeddings from different node contents, such
as images, text, or attributes:

f1(v) =
Âi2Cv [

���!
LST M{FC (hi)}�

 ���
LST M{FC (hi)}]

|Cv|
, (16.7)

where Cv is the type of node v’s attributes. hi is the i-th attributes of node v. A bi-
directional Long Short-Term Memory (Bi-LSTM) (Huang et al, 2015) is used to fuse
the embeddings learned by multiple attribute encoder FC . Neighbor aggregation
aims to aggregate the nodes with same type by using a Bi-LSTM to capture the
position information:

16 Heterogeneous Graph Neural Networks 361

f t
2(v) =

Âv0 2Nt (v)
[
���!
LST M{ f1(v

0
)}� ���LST M{ f1(v

0
)}]

|Nt(v)|
, (16.8)

where Nt(v) is the first-order neighbors of node v with type t. Type aggregation uses
an attention mechanism to mix the embeddings of different types and produces the
final node embeddings.

hv = av,v f1(v)+ Â
t2Ov

av,t f t
2(v). (16.9)

where hv is the final embedding of node v, and Ov denotes the set of node types. Fi-
nally, a heterogeneous skip-gram loss is used as the unsupervised graph context loss
to update node embeddings. Through these three aggregation methods, HetGNN
can preserve the heterogeneity of both graph structures and node attributes.

Other unsupervised methods capture either heterogeneity of node attributes or
heterogeneity of graph structures. HNE (Chang et al, 2015) is proposed to learn em-
beddings for the cross-model data in HGs, but it ignores the various types of edges.
SHNE (Zhang et al, 2019c) focuses on capturing semantic information of nodes by
designing a deep semantic encoder with gated recurrent units (GRU) (Chung et al,
2014). Although it uses heterogeneous skip-gram to preserve the heterogeneity of
graph, SHNE is designed specifically for text data. Cen proposes GATNE (Cen et al,
2019), which aims to learn node embeddings in multiplex graph, i.e., a heteroge-
neous graph with different types of edges. Compared with HetGNN, GATNE pays
more attention to distinguishing different edge relationships between node pairs.

Semi-supervised HGNNs. Different from unsupervised HGNNs, semi-supervised
HGNNs aim to learn task-specific node embeddings in an end-to-end manner. For
this reason, they prefer to use the attention mechanism to capture the most relevant
structural and attribute information to the task. Wang (Wang et al, 2019m) propose
heterogeneous graph attention network (HAN), which uses a hierarchical attention
mechanism to capture both node and semantic importance. The architecture of HAN
is shown in Fig. 16.5.

It consists of three parts: node-level attention, semantic-level attention, and pre-
diction. Node-level attention aims to utilize the self-attention mechanism (Vaswani
et al, 2017) to learn importances of neighbors in a certain meta-path:

am
i j =

exp(s(aT
m · [h0ikh

0
j]))

Âk2N m
i

exp(s(aT
m · [h0ikh

0
k]))

, (16.10)

where N m
i is the neighbors of node vi in meta-path m, am

i j is the weight of node v j
to node vi under meta-path m. The node-level aggregation is defined as:

hm
i = s

0

@ Â
j2N m

i

am
i j ·h j

1

A , (16.11)

362 Chuan Shi

Fig. 16.5: The architecture of HAN (Wang et al, 2019m). The whole model can
be divided into three parts: Node-Level Attention aims to learn the importance of
neighbors’ features. Semantic-Level Attention aims to learn the importance of dif-
ferent meta-paths. Prediction layer utilizes the labeled nodes to update node embed-
dings.

where hm
i denotes the learned embedding of node i based on meta-path m. Because

different meta-paths capture different semantic information of HG, a semantic-level
attention mechanism is designed to calculated the importance of meta-paths. Given
a set of meta-paths {m0,m1, · · · ,mP}, after feeding node features into node-level
attention, it has P semantic-specific node embeddings {Hm0 ,Hm1 , · · · ,HmP}. To ef-
fectively aggregate different semantic embeddings, HAN designs a semantic-level
attention mechanism:

wmi =
1

|V | Â
i2V

qT · tanh(W ·hm
i +b), (16.12)

where W 2 Rd0⇥d and b 2 Rd0⇥1 denote the weight matrix and bias of the MLP,
respectively. q 2Rd0⇥1 is the semantic-level attention vector. In order to prevent the
node embeddings from being too large, HAN uses the softmax function to normalize
wmi . Hence, the semantic-level aggregation is defined as:

H =
P

Â
i=1

bmi ·Hmi , (16.13)

where bmi denotes the normalized wmi , which represents the semantic importance.
H 2 RN⇥d denotes the final node embeddings. Finally, a task-specific layer is used
to fine-tune node embeddings with a small number of labels and the embeddings H
can be used in downstream tasks, such as node clustering and link prediction. HAN
is the first to extend GNNs to the heterogeneous graph and design a hierarchical
attention mechanism, which can capture both structural and semantic information.

16 Heterogeneous Graph Neural Networks 363

Subsequently, a series of attention-based HGNNs was proposed (Fu et al, 2020;
Hong et al, 2020b; Hu et al, 2020e). MAGNN (Fu et al, 2020) designs intra-metapath
aggregation and inter-metapath aggregation. The former samples some meta-path
instances surrounding the target node and uses an attention layer to learn the impor-
tance of different instances, and the latter aims to learn the importance of different
meta-paths. HetSANN (Hong et al, 2020b) and HGT (Hu et al, 2020e) treat one
type of node as query to calculate the importance of other types of nodes around it,
through which the method can not only capture interactions among different types
of nodes, but also assign different weights to neighbors during aggregation.

In addition, there are some HGNNs that focus on other issues. NSHE (Zhao et al,
2020b) proposes to incorporate network schema, instead of meta-path, in aggregat-
ing neighborhood information. GTN (Yun et al, 2019) aims to automatically identify
the useful meta-paths and high-order edges in the process of learning node embed-
dings. RSHN (Zhu et al, 2019d) uses both original node graph and coarsened line
graph to design a relation-structure aware HGNN. RGCN (Schlichtkrull et al, 2018)
uses multiple weight matrices to project the node embeddings into different relation
spaces, thus capturing the heterogeneity of the graph.

Compared with shallow models, HGNNs have an obvious advantage that they
have the ability of inductive learning, i.e., learning embeddings for out-of-sample
nodes. Besides, HGNNs need smaller memory space because they only need to store
model parameters. These two reasons are important for the real-world applications.
However, they still suffer from the huge time costing in inferencing and retraining.

16.3.2 Encoder-decoder-based Methods

Encoder-decoder-based techniques aim to employ some neural networks as encoder
to learn embedding from node attributes and design a decoder to preserve some
properties of the graphs (Tu et al, 2018; Chang et al, 2015; Zhang et al, 2019c; Chen
and Sun, 2017; Zhang et al, 2018a; Park et al, 2019).

For example, DHNE (Tu et al, 2018) proposes hyper-path-based random walk to
preserve both structural information and indecomposability of hyper-graphs. Specif-
ically, it designs a novel deep model to produce a non-linear tuple-wise similarity
function while capturing the local and global structures of a given HG. As shown
in Fig. 16.6, taking a hyperedge with three nodes a,b and c as an example. The first
layer of DHNE is an autoencoder, which is used to learn latent embeddings and pre-
serve the second-order structures of graph (Tang et al, 2015b). The second layer is
a fully connected layer with embedding concatenated:

L = s(Waha�Wbhb�Wchc), (16.14)

where L denotes the embedding of the hyperedge; ha,hb and hc 2 Rd⇥1 are the
embeddings of node a, b and c learn by the autoencoder. Wa,Wb and Wc 2Rd0⇥d are
the transformation matrices for different node types. Finally, the third layer is used

364 Chuan Shi

Fig. 16.6: The framework of DHNE (Tu et al, 2018). DHNE learns embeddings
for nodes in heterogeneous hypernetworks, which can simultaneously address inde-
composable hyperedges while preserving rich structural information.

to calculate the indecomposability of hyperedge:

S = s(W ·L+b), (16.15)

where S denote the indecomposability of hyperedge; W 2R1⇥3d0 and b2R1⇥1 are
the weight matrix and bias, respectively. A higher value of S means these nodes
are from the existing hyperedges, otherwise it should be small.

Similarly, HNE (Chang et al, 2015) focuses on multi-modal heterogeneous graph.
It uses CNN and autoencoder to learn embedding from images and texts, respec-
tively. Then it uses the embedding to predict whether there is an edge between the
images and texts. Camel (Zhang et al, 2018a) uses GRU as an encoder to learn paper
embedding from the abstracts. A skip-gram objective function is used to preserve
the local structures of the graphs.

16.3.3 Adversarial-based Methods

Adversarial-based techniques utilize the game between generator and discriminator
to learn robust node embedding. In homogeneous graph, the adversarial-based tech-
niques only consider the structural information, for example, GraphGAN (Wang
et al, 2018a) uses Breadth First Search when generating virtual nodes. In a HG, the
discriminator and generator are designed to be relation-aware, which captures the
rich semantics on HGs. HeGAN (Hu et al, 2018a) is the first to use GAN in HG em-
bedding. It incorporates the multiple relations into the generator and discriminator,
so that the heterogeneity of a given graph can be considered.

As shown in Fig. 16.7 (c), HeGAN mainly consists of two competing players,
the discriminator and the generator. Given a node, the generator attempts to produce

16 Heterogeneous Graph Neural Networks 365

Fig. 16.7: Overview of HeGAN (Hu et al, 2018a). (a) A toy HG for bibliographic
data. (b) Comparison between HeGAN and previous works. (c) The framework of
HeGAN for adversarial learning on HGs.

fake samples associated with the given node to feed into the discriminator, whereas
the discriminator tries to improve its parameterization to separate the fake samples
from the real ones actually connected to the given node. The better trained discrimi-
nator would then force the generator to produce better fake samples, and the process
is repeated. During such iterations, both the generator and discriminator receive mu-
tual, positive reinforcement. While this setup may appear similar to previous efforts
(Cai et al, 2018c; Dai et al, 2018c; Pan et al, 2018) on GAN-based network embed-
ding, HeGAN employs two major novelties to address the challenges of adversarial
learning on HINs.

First, existing studies only leverage GAN to distinguish whether a node is real
or fake w.r.t. structural connections to a given node, without accounting for the het-
erogeneity in HINs. For example, given a paper p2, they treat nodes a2, a4 as real,
whereas a1, a3 are fake simply based on the topology of the HIN shown in Fig. 16.7
(a). However, a2 and a4 are connected to p2 for different reasons: a2 writes p2 and
a4 only views p2. Thus, they miss out on valuable semantics carried by HGs, un-
able to differentiate a2 and a4 even though they play distinct semantic roles. Given
a paper p2 as well as a relation, say, write/written, HeGAN introduces a relation-
aware discriminator to tell apart a2 and a4. Formally, relation-aware discriminator
C(ev | u,r;qC) evaluates the connectivity between the pair of nodes u and v w.r.t. a
relation r:

C(ev | u,r;qC) =
1

1+ exp(�eC>
u MC

r ev)
, (16.16)

where ev 2 Rd⇥1 is the input embedding of the sample v, eu 2 Rd⇥1 is the learnable
embedding of node u, and MC

r 2 Rd⇥d is a learnable relation matrix for relation r.
Second, existing studies are limited in sample generation in both effectiveness

and efficiency. They typically model the distribution of nodes using some form of
softmax over all nodes in the original graph. In terms of effectiveness, their fake
samples are constrained to the nodes in the graph, whereas the most representative
fake samples may fall “in between” the existing nodes in the embedding space. For
example, given a paper p2, they can only choose fake samples from V , such as

366 Chuan Shi

a1 and a3. However, both may not be adequately similar to real samples such as
a2. Towards a better sample generation, we introduce a generalized generator that
can produce latent nodes such as a0 shown in Fig. 16.7 (c), where it is possible
that a0 /2 V . In particular, the generalized generator leverage the following Gaussian
distribution:

N (eG>
u MG

r ,s2I), (16.17)

where eG
u 2 Rd⇥1 and MG

r 2 Rd⇥d denote the node embedding of u 2 V and the
relation matrix of r 2R for the generator.

Except for HeGAN, MV-ACM (Zhao et al, 2020c) uses GAN to generate the
complementary views by computing the similarity of nodes in different views. Over-
all, adversarial-based methods prefer to utilize the negative samples to enhance the
robustness of embeddings. But the choice of negative samples has a huge influence
on the performance, thus leading higher variances.

16.4 Review

Based on the above representative work of the shallow and deep models, it can be
found that the shallow models mainly focus on the structure of HGs, and rarely
use additional information such as attributes. One of the possible reasons is that
shallow models are hard to depict the relationship between additional and struc-
tural information. The learning ability of DNNs supports modeling of this complex
relationship. For example, message passing-based techniques are good at encod-
ing structures and attributes simultaneously, and integrate different semantic infor-
mation. Compared with message passing-based techniques, encoder-decoder-based
techniques are weak in fusing information due to the lack of messaging mechanism.
But they are more flexible to introduce different objective functions through differ-
ent decoders. Adversarial-based methods prefer to utilize the negative samples to
enhance the robustness of embeddings. But the choice of negative samples has a
huge influence on the performance, thus leading higher variances (Hu et al, 2019a).

However, shallow and deep models each have their own pros and cons. Shallow
models lack non-linear representation capability, but are efficient and easy to par-
allelize. Specially, the complexity of random walk technique consists of two parts:
random walk and skip-gram, both of which are linear with the number of nodes. De-
composition technique needs to divide HGs into sub-graphs according to the type
of edges, so the complexity is linear with the number of edges, which is higher
than random walk. Deep models have stronger representation capability, but they
are easier to fit noise and have higher time and space complexity. Additionally, the
cumbersome hyperparameter adjustment of deep models is also criticized. But with
the popularity of deep learning, deep models, especially HGNNs, have become the
main research direction in HG embedding.

16 Heterogeneous Graph Neural Networks 367

16.5 Future Directions

HGNNs have made great progress in recent years, which clearly shows that it is a
powerful and promising graph analysis paradigm. In this section, we discuss addi-
tional issues/challenges and explore a series of possible future research directions.

16.5.1 Structures and Properties Preservation

The basic success of HGNNs builds on the HG structure preservation. This also
motivates many HGNNs to exploit different HG structures, where the most typical
one is meta-path (Dong et al, 2017; Shi et al, 2016). Following this line, meta-graph
structure is naturally considered (Zhang et al, 2018b). However, HG is far more than
these structures. Selecting the most appropriate meta-path is still very challenging in
the real world. An improper meta-path will fundamentally hinder the performance
of HGNNs. Whether we can explore other techniques, e.g., motif (Zhao et al, 2019a;
Huang et al, 2016b) or network schema (Zhao et al, 2020b) to capture HG structure
is worth pursuing. Moreover, if we rethink the goal of traditional graph embedding,
i.e., replacing structure information with the distance/similarity in a metric space, a
research direction to explore is whether we can design HGNNs which can naturally
learn such distance/similarity rather than using pre-defined meta-path/meta-graph.

As mentioned before, many current HGNNs mainly take the structures into ac-
count. However, some properties, which usually provide additional useful infor-
mation to model HGs, have not been fully considered. One typical property is the
dynamics of HG, i.e., a real-world HG always evolves over time. Despite that the
incremental learning on dynamic HG is proposed (Wang et al, 2020m), dynamic
heterogeneous graph embedding is still facing big challenges. For example, Bian
et al (2019) is only proposed with a shallow model, which greatly limits its embed-
ding ability. How can we learn dynamic heterogeneous graph embedding in HGNNs
framework is worth pursuing. The other property is the uncertainty of HG, i.e., the
generation of HG is usually multi-faceted and the node in a HG contains different
semantics. Traditionally, learning a vector embedding usually cannot well capture
such uncertainty. Gaussian distribution may innately represent the uncertainty prop-
erty (Kipf and Welling, 2016; Zhu et al, 2018), which is largely ignored by current
HGNNs. This suggests a huge potential direction for improving HGNNs.

16.5.2 Deeper Exploration

We have witnessed the great success and large impact of GNNs, where most of the
existing GNNs are proposed for homogeneous graph (Kipf and Welling, 2017b;
Veličković et al, 2018). Recently, HGNNs have attracted considerable attention
(Wang et al, 2019m; Zhang et al, 2019b; Fu et al, 2020; Cen et al, 2019).

368 Chuan Shi

One natural question may arise that what is the essential difference between
GNNs and HGNNs. More theoretical analysis on HGNNs is seriously lacking. For
example, it is well accepted that the GNNs suffer from over-smoothing problem (Li
et al, 2018b), so will HGNNs also have such a problem? If the answer is yes, what
factor causes the over-smoothing problem in HGNNs since they usually contain
multiple aggregation strategies (Wang et al, 2019m; Zhang et al, 2019b).

In addition to theoretical analysis, new technique design is also important. One
of the most important directions is the self-supervised learning. It uses the pre-
text tasks to train neural networks, thus reducing the dependence on manual la-
bels (Liu et al, 2020f). Considering the actual demand that label is insufficient,
self-supervised learning can greatly benefit the unsupervised and semi-supervised
learning, and has shown remarkable performance on homogeneous graph embed-
ding (Veličković et al, 2018; Sun et al, 2020c). Therefore, exploring self-supervised
learning on HGNNs is expected to further facilitate the development of this area.

Another important direction is the pre-training of HGNNs (Hu et al, 2020d; Qiu
et al, 2020a). Nowadays, HGNNs are designed independently, i.e., the proposed
method usually works well for certain tasks, but the transfer ability across differ-
ent tasks is ill-considered. When dealing with a new HG or task, we have to train
HGNNs from scratch, which is time-consuming and requires a large amount of la-
bels. In this situation, if there is a well pre-trained HGNN with strong generaliza-
tion that can be fine-tuned with few labels, the time and label consumption can be
reduced.

16.5.3 Reliability

Except for properties and techniques in HGs, we are also concerned about ethical
issues in HGNNs, such as fairness, robustness, and interpretability. Considering that
most methods are black boxes, making HGNNa reliable is an important future work.

Fairness. The embeddings learned by methods are sometimes highly related to
certain attributes, e.g., age or gender, which may amplify societal stereotypes in the
prediction results (Du et al, 2020). Therefore, learning fair or de-biased embeddings
is an important research direction. There are some researches on the fairness of
homogeneous graph embedding (Bose and Hamilton, 2019; Rahman et al, 2019).
However, the fairness of HGNNs is still an unsolved problem, which is an important
research direction in the future.

Robustness. Also, the robustness of HGNNs, especially the adversarial attack-
ing, is always an important problem (Madry et al, 2017). Since many real-world
applications are built based on HGs, the robustness of HGNNs becomes an urgent
yet unsolved problem. What is the weakness of HGNNs and how to enhance it to
improve the robustness need to be further studied.

Interpretability. Moreover, in some risk-aware scenarios, e.g., fraud detection
(Hu et al, 2019b) and bio-medicine (Cao et al, 2020), the explanation of mod-
els or embeddings is important. A significant advantage of HG is that it contains

16 Heterogeneous Graph Neural Networks 369

rich semantics, which may provide eminent insight to promote the explanation of
HGNNs. Besides, the emerging disentangled learning (Siddharth et al, 2017; Ma
et al, 2019c), which divides the embedding into different latent spaces to improve
the interpretability, can also be considered.

16.5.4 Applications

Many HG-based applications have stepped into the era of graph embedding. There
have demonstrated the strong performance of HGNNs on E-commerce and cyber-
security. Exploring more capacity of HGNNs on other areas holds great potential in
the future. For example, in software engineering area, there are complex relations
among test sample, requisition form, and problem form, which can be naturally
modeled as HGs. Therefore, HGNNs are expected to open up broad prospects for
these new areas and become a promising analytical tool. Another area is the bio-
logical system, which can also be naturally modeled as a HG. A typical biological
system contains many types of objects, e.g., Gene Expression, Chemical, Pheno-
type, and Microbe. There are also multiple relations between Gene Expression and
Phenotype (Tsuyuzaki and Nikaido, 2017). HG structure has been applied to bio-
logical system as an analytical tool, implying that HGNNs are expected to provide
more promising results.

In addition, since the complexity of HGNNs are relatively large and the tech-
niques are difficult to parallelize, it is difficult to apply the existing HGNNs to
large-scale industrial scenarios. For example, the number of nodes in E-commerce
recommendation may reach one billion (Zhao et al, 2019b). Therefore, successful
technique deployment in various applications while resolving the scalability and
efficiency challenges will be very promising.

Editor’s Notes: The concept of the heterogeneous graph is essentially orig-
inated from the data mining domain. Although heterogeneous graphs can
usually be formulated as attributed graphs (Chapter 4), the research fo-
cus of the former is typically the frequent combinatorial patterns of node
types in a subgraph (usually a path). Heterogeneous graphs represent a wide
range of real-world applications which usually consist of multiple, hetero-
geneous data sources. For example, in recommender systems introduced
in Chapter 19, we have both the “user” node and “item” node as well as
higher-order patterns formed by multi-node types. Similarly, molecules and
proteins as well as many networks in Natural Language Processing and Pro-
gram Analysis can also be considered as heterogeneous graphs (see Chap-
ters 21,22,24,25).

