
Chapter 15
Dynamic Graph Neural Networks

Seyed Mehran Kazemi

Abstract The world around us is composed of entities that interact and form re-
lations with each other. This makes graphs an essential data representation and a
crucial building-block for machine learning applications; the nodes of the graph
correspond to entities and the edges correspond to interactions and relations. The
entities and relations may evolve; e.g., new entities may appear, entity properties
may change, and new relations may be formed between two entities. This gives rise
to dynamic graphs. In applications where dynamic graphs arise, there often exists
important information within the evolution of the graph, and modeling and exploit-
ing such information is crucial in achieving high predictive performance. In this
chapter, we characterize various categories of dynamic graph modeling problems.
Then we describe some of the prominent extensions of graph neural networks to dy-
namic graphs that have been proposed in the literature. We conclude by reviewing
three notable applications of dynamic graph neural networks namely skeleton-based
human activity recognition, traffic forecasting, and temporal knowledge graph com-
pletion.

15.1 Introduction

Traditionally, machine learning models were developed to make predictions about
entities (or objects or examples) given only their features and irrespective of their
connections with the other entities in the data. Examples of such prediction tasks
include predicting the political party a social network user supports given their other
features, predicting the topic of a publication given its text, predicting the type of
the object in an image given the image pixels, and predicting the traffic in a road (or
road segment) given historical traffic data in that road.

Seyed Mehran Kazemi
Borealis AI, e-mail: mehran.kazemi@borealisai.com

323

mehran.kazemi@borealisai.com

324 Seyed Mehran Kazemi

In many applications, there exist relationships between the entities that can be
exploited to make better predictions about them. As a few examples, social network
users that are close friends or family members are more likely to support the same
political party, two publications by the same author are more likely to have the same
topic, two images taken from the same website (or uploaded to social media by
the same user) are more likely to have similar objects in them, and two roads that
are connected are more likely to have similar traffic volumes. The data for these
applications can be represented in the form of a graph where nodes correspond to
entities and edges correspond to the relationships between these entities.

Graphs arise naturally in many real-world applications including recommender
systems, biology, social networks, ontologies, knowledge graphs, and computational
finance. In some domains the graph is static, i.e. the graph structure and the node fea-
tures are fixed over time. In other domains, the graph changes over time. In a social
network, for example, new edges are added when people make new friends, exist-
ing edges are removed when people stop being friends, and node features change
as people change their attributes, e.g., when they change their career assuming that
career is one of the node features. In this chapter, we focus on the domains where
the graph is dynamic and changes over time.

In applications where dynamic graphs arise, modeling the evolution of the graph
is often crucial in making accurate predictions. Over the years, several classes of
machine learning models have been developed that capture the structure and the
evolution of dynamic graphs. Among these classes, extensions of graph neural net-
works (GNNs) (Scarselli et al, 2008; Kipf and Welling, 2017b) to dynamic graphs
have recently found success in several domains and they have become one of the
essential tools in the machine learning toolbox. In this chapter, we review the GNN
approaches for dynamic graphs and provide several application domains where dy-
namic GNNs have provided striking results. The chapter is not meant to be a full
survey of the literature but rather a description of the common techniques for apply-
ing GNNs to dynamic graphs. For a comprehensive survey of representation learn-
ing approaches for dynamic graphs we refer the reader to (Kazemi et al, 2020), and
for a more specialized survey of GNN-based approaches to dynamic graphs we refer
the reader to (Skarding et al, 2020).

The rest of the chapter is organized as follows. In Section 15.2, we define the no-
tation that will be used throughout the chapter and provide the necessary background
to follow the rest of the chapter. In Section 15.3, we describe different types of dy-
namic graphs and different prediction problems on these graphs. In Section 15.4, we
review several approaches for applying GNNs on dynamic graphs. In Section 15.5,
we review some of the applications of dynamic GNNs. Finally, Section 15.6 sum-
marizes and concludes the chapter.

15 Dynamic Graph Neural Networks 325

15.2 Background and Notation

In this section, we define our notation and provide the background required to follow
the rest of the chapter.

We use lowercase letters z to denote scalars, bold lowercase letters z to denote
vectors and uppercase letters Z to denote matrices. zi denotes the i element of z,
Zi denotes a column vector corresponding to the i row of Z, and Zi, j denotes the
element at the i row and j column of Z. z denotes the transpose of z and Z denotes
the transpose of Z. (zz0) 2 Rd+d0 corresponds to the concatenation of z 2 Rd and
z0 2 Rd0 . We use to represent an identity matrix. We use � to denote element-
wise (Hadamard) product. We represent a sequence as [e1,e2, . . . ,ek] and a set as
{e1,e2, . . . ,ek} where eis represent the elements in the sequence or set.

In this chapter, we mainly consider attributed graphs. We represent an attributed
graph as G = (V,A,X) where V = {v1,v2, . . . ,vn} is the set of vertices (aka nodes),
n = |V | denotes the number of nodes, A 2 Rn⇥n is an adjacency matrix, and X 2
Rn⇥d is a feature matrix where Xi represents the features associated with the i node
vi and d denotes the number of features. If there exists no edge between vi and v j,
then Ai, j = 0; otherwise, Ai, j 2 R+ represents the weight of the edge where R+

represents positive real numbers.
If G is unweighted, then the range of A is {0,1} (i.e. A 2 {0,1}n⇥n). G is undi-

rected if the edges have no directions; it is directed if the edges have directions.
For an undirected graph, A is symmetric (i.e. A = A). For each edge Ai, j > 0 of
a directed graph, we call vi the source and v j the target of the edge. If G is multi-
relational with a set R = {r1, . . . ,rm} of relations, then the graph has m adjacency
matrices where the i adjacency matrix represents the existence of the i relation ri
between the nodes.

15.2.1 Graph Neural Networks

In this chapter, we use the term Graph Neural Network (GNN) to refer to the general
class of neural networks that operate on graphs through message-passing between
the nodes. Here, we provide a brief description of GNNs.

Let G = (V,A,X) be a static attributed graph. A GNN is a function f : Rn⇥n⇥
Rn⇥d!Rn⇥d0 that takes G (or more specifically A and X) as input and provides as
output a matrix Z 2 Rn⇥d0 where Zi 2 Rd0 corresponds to a hidden representation
for the i node vi. This hidden representation is called the node embedding. Provid-
ing a node embedding for each node vi can be viewed as dimensionality reduction
where the information from vi’s initial features as well as the information from its
connectivity to other nodes and the features of these nodes are captured in a vector
Zi. This vector can be used to make informed predictions about vi. In what follows,
we describe two example GNNs namely graph convolutions networks and graph
attention networks for undirected graphs.

326 Seyed Mehran Kazemi

Graph Convolutional Networks: Graph convolutional networks (GCNs) (Kipf
and Welling, 2017b) stack multiple layers of graph convolution. The l layer of GCN
for an undirected graph G = (V,A,X) can be formulated as follows:

Z(l) = s(D�
1
2 ÃD�

1
2 Z(l�1)W (l)) (15.1)

where Ã=A+ corresponds to the adjacency matrix with self-loops, D is a diagonal
degree matrix with Di,i = Ãi1 (1 represents a column vector of ones) and Di, j =

0 for i 6= j, D�
1
2 ÃD�

1
2 corresponds to a row and column normalization of Ã,

Z(l) 2 Rn⇥d(l) and Z(l�1) 2 Rn⇥d(l�1) represent the node embeddings in layer l and
(l�1) respectively with Z(0) =X , W (l) 2Rd(l�1)⇥d(l) represents the weight matrix
at layer l, and s is an activation function.

The l layer of a GCN model can be described in terms of the following steps.
First, it applies a linear projection to the node embeddings Z(l�1) using the weight
matrix W (l), then for each node vi it computes a weighted sum of the projected em-
beddings of vi and its neighbors where the weights for the weighted sum are speci-
fied according to D�

1
2 ÃD�

1
2 , and finally it applies a non-linearity to the weighted

sums and updates the node embeddings. Notice that in a L-layer GCN, the embed-
ding for each node is computed based on its L-hop neighborhood (i.e. based on the
nodes that are at most L hops away from it).

Graph Attention Networks: Instead of fixing the weights when computing a
weighted sum of the neighbors, attention-based GNNs replace D�

1
2 ÃD�

1
2 in equa-

tion 15.1 with an attention matrix Â(l) 2 Rn⇥n such that:

Z(l) = s(Â(l)Z(l�1)W (l)) (15.2)

Â(l)
i, j =

E(l)
i, j

Âk E
(l)
i,k

, E(l)
i, j = Ãi, j exp

�
a(Z(l�1)

i ,Z(l�1)
j ;q (l))

�
(15.3)

where a : Rd(l�1) ⇥Rd(l�1) ! R is a function with parameters q (l) that computes
attention weights for pairs of nodes. Here, Ã acts as a mask that ensures E(l)

i, j = 0

(and consequently Â(l)
i, j = 0) if vi and v j are not connected. The exp function in the

computation of E(l)
i, j and the normalization

E
(l)
i, j

Âk E
(l)
i,k

correspond to a (masked) soft-

max function of the attention weights. Different attention-based GNNs can be con-
structed with different choices of a . In graph attention networks (GATs) (Veličković
et al, 2018), q (l) 2 R2d(l) and a is defined as follows:

a(Z(l�1)
i ,Z(l�1)

j ;q (l)) = s
�
q (l)(W (l)Z(l�1)

i || W (l)Z(l�1)
j)

�
(15.4)

where s is an activation function. The formulation in equation 15.2 corresponds to
a single-head attention-based GNN. A multi-head attention-based GNN computes
multiple attention matrices Â(l,1), . . . ,Â(l,b) using equation 15.3 but with differ-

15 Dynamic Graph Neural Networks 327

ent weights q (l,1), . . . ,q (l,b) and W (l,1), . . . ,W (l,b) and then replaces equation 15.2
with:

Z(l) = s(Â(l,1)Z(l�1)W (l,1) || . . . || Â(l,b)Z(l�1)W (l,b)) (15.5)

where b is the number of heads. Each head may learn to aggregate the neighbors
differently and extract different information.

15.2.2 Sequence Models

Over the years, several models have been proposed that operate on sequences. In
this chapter, we are mainly interested in neural sequence models that take as input a
sequence [x(1),x(2), . . . ,x(t)] of observations where x(t) 2Rd for all t 2 {1, . . . ,t},
and produce as output hidden representations [h(1),h(2), . . . ,h(t)] where h(t) 2 Rd0

for all t 2 {1, . . . ,t}. Here, t represents the length of the sequence or the timestamp
for the last element in the sequence. Each hidden representation h(t) is a sequence
embedding capturing information from the first t observations. Providing a sequence
embedding for a given sequence can be viewed as dimensionality reduction where
the information from the first t observations in the sequence is captured in a single
vector h(t) which can be used to make informed predictions about the sequence. In
what follows, we describe recurrent neural networks, Transformers, and convolu-
tional neural networks for sequence modeling.

Recurrent Neural Networks: Recurrent neural networks (RNNs) (Elman, 1990)
and its variants have achieved impressive results on a range of sequence modeling
problems. The core principle of the RNN is that its output is a function of the current
data point as well as a representation of the previous inputs. Vanilla RNNs consume
the input sequence one by one and provides embeddings using the following equa-
tion (applied sequentially for t in [1, . . . ,t]):

h(t) = RNN(x(t),h(t�1)) = s(W (i)x(t) +W (h)h(t�1) +b) (15.6)

where W (.)s and b are the model parameters, h(t) is the hidden state corresponding
to the embedding of the first t observations, and x(t) is the t observation. One may
initialize h(0) = 0, where 0 is a vector of 0s, or let h(0) be learned during training.
Training vanilla RNNs is typically difficult due to gradient vanishing and exploding.

Long short term memory (LSTMs) (Hochreiter and Schmidhuber, 1997) (and
gated recurrent units (GRUs) (Cho et al, 2014a)) alleviate the training problem of
vanilla RNNs through gating mechanism and additive operations. An LSTM model
consumes the input sequence one by one and provides embeddings using the fol-
lowing equations:

328 Seyed Mehran Kazemi

LS
TM

 C
el

l𝐡(0)

𝐜(0) LS
TM

 C
el

l𝐡(1)

𝐜(1)

𝐡(2)

𝐜(2) LS
TM

 C
el

l𝐡(𝑇−1)

𝐜(𝑇−1)
…

…

𝐡(1) 𝐡(2) 𝐡(𝑇)…

𝐱(1) 𝐱(2) 𝐱(𝑇)

𝐡(𝑇)

𝐜(𝑇)

Fig. 15.1: An LSTM model taking as input a sequence x(1),x(2), . . . ,x(t) and pro-
ducing hidden representations h(1),h(2), . . . ,h(t) as output. Equations 15.7-15.11
describe the operations in LSTM Cells.

i(t) = s
⇣
W (ii)x(t) +W (ih)h(t�1) +b(i)

⌘
(15.7)

f (t) = s
⇣
W (f i)x(t) +W (f h)h(t�1) +b(f)

⌘
(15.8)

c(t) = f (t)�c(t�1) + i(t)�Tanh
⇣
W (ci)x(t) +W (ch)h(t�1) +b(c)

⌘
(15.9)

o(t) = s
⇣
W (oi)x(t) +W (oh)h(t�1) +b(o)

⌘
(15.10)

h(t) = o(t)�Tanh
⇣
c(t)

⌘
(15.11)

Here i(t), f (t), and o(t) represent the input, forget and output gates respectively,
c(t) is the memory cell, h(t) is the hidden state corresponding to the embedding of
the sequence until t observation, s is an activation function (typically Sigmoid),
Tanh represents the hyperbolic tangent function, and W (..)s and b(.)s are weight
matrices and vectors. Similar to vanilla RNNs, one may initialize h(0) = c(0) = 0 or
let them be vectors with learnable parameters. Figure 15.1 shows an overview of an
LSTM model.

A bidirectional RNN (BiRNN) (Schuster and Paliwal, 1997) is a combination of
two RNNs one consuming the input sequence [x(1),x(2), . . . ,x(t)] in the forward
direction and producing hidden representations [

�!
h (1),

�!
h (2), . . . ,

�!
h (t)] as output,

and the other consuming the input sequence backwards (i.e. [x(t),x(t�1), . . . ,x(1)])
and producing hidden representations [

 �
h (t),

 �
h (t�1), . . . ,

 �
h (1)] as output. These two

hidden representations are then concatenated producing a single hidden representa-
tion h(t) = (

�!
h (t) �h (t)). Note that in RNNs, h(t) is computed only based on obser-

vations at or before t whereas in BiRNNs, h(t) is computed based on observations
at, before, or after t. BiLSTMs Graves et al (2005) are a specific version of BiRNNs
where the RNN is an LSTM.

Transformers: Consuming the input sequence one by one makes RNNs not
amenable to parallelization. It also makes capturing long-range dependencies dif-
ficult. To solve these issues, the Transformer model Vaswani et al (2017) allows

15 Dynamic Graph Neural Networks 329

processing a sequence as a whole. The central operation in Transformer models is
the self-attention mechanism. Let H(l�1) be an embedding matrix in layer (l� 1)

such that its t row H(l�1)
t represents the embedding of the first t observations. The

self-attention mechanism at each layer l can be described similar to equation 15.2
and equation 15.3 for attention-based GNNs by defining Ã in equation 15.3 as a
lower triangular matrix where Ãi, j = 1 if i j and Ãi, j = 0 otherwise, replacing Z(l)

and Z(l�1) with H(l) and H(l�1), and defining the a function in equation 15.3 as
follows:

a(H(l�1)
t ,H(l�1)

t 0 ;q (l)) =
QtKt 0p

d(k)
,Q = W (l,Q)H(l�1),K = W (l,K)H(l�1)

(15.12)
where q l = {W (l,Q),W (l,K)} are the weights with W (l,Q),W (l,K) 2 Rd(l�1)⇥d(k) .
The matrices Q and K are called the query and key matrices1. Qt and Kt 0 represent
column vectors corresponding to the t and t 0 th row of Q and K, respectively. After
L layers, the hidden representations H(L) contain the sequence embeddings with
H(L)

t corresponding to the embedding of the first t observations (denoted as h(t) for
RNNs). The lower-triangular matrix Ã ensures that the embedding H(L)

t is computed
based only on the observations at and before the t observation. One may define Ã as
a matrix of all 1s to allow H(L)

t to be computed based on the observations at, before,
and after the t observation (similar to BiRNNs).

In equation 15.12, the embeddings are updated based on an aggregation of the
embeddings from the previous timestamps, but the order of these embeddings is not
modeled explicitly. To enable taking the order into account, the embeddings in the
Transformer model are initialized as H(0)

t =x(t)+p(t) or H(0)
t = (x(t) || p(t)) where

H(0)
t is the t row of H(0), x(t) is the t observation, and p(t) is a positional encoding

capturing information about the position of the observation in the sequence. In the
original work, the positional encodings are defined as follows:

p(t)
2i = sin(t/100002i/d), p(t)

2i+1 = sin(t/100002i/d +p/2) (15.13)

Note that p(t) is constant and does not change during training.
Convolutional Neural Networks: Convolutional neural networks (CNNs) (Le Cun

et al, 1989) have revolutionized many computer vision applications. Originally,
CNNs were proposed for 2D signals such as images. They were later used for 1D
signals such as sequences and time-series. Here, we describe 1D CNNs. We start
with describing 1D convolutions. Let H 2 Rn⇥d be a matrix and F 2 Ru⇥d be a
convolution filter. Applying the filter F on H produces a vector h0 2 Rn�u+1 as
follows:

h0i =
u

Â
j=1

d

Â
k=1

Hi+ j�1,kF j,k (15.14)

1 For readers familiar with Transformers, in our description the values matrix corresponds to the
multiplication of the embedding matrix with the weight matrix W (l) in equation 15.2.

330 Seyed Mehran Kazemi

0.1 -0.2 1.1 0.2

0.9 -0.8 1.0 1.0

0.2 0.3 0.4 0.5

0.6 -0.6 0.5 -0.5

1.1 1.2 2.1 2.2

0.0 0.0 1.0 1.2

Input
0.4 0.0 1.0 0.4

0.0 -1.2 3.2 0.5

Filter 1

-1.2 0.8 0.0 0.0

0.0 0.0 -3.2 0.5

Filter 2

5.88 -2.98

2.93 -2.75

2.75 -1.85

6.92 -6.82

7.22 -2.96

Result

(-1.2)(0.9)+(-0.8)(0.8)+(0.0)(1.0)+(0.0)(1.0)
+ (0.0)(0.2)+(0.0)(0.3)+(-3.2)(0.4)+(0.5)(0.5)
= -2.75

Fig. 15.2: An example of a 1D convolution operation with two convolution filters.

It is also possible to produce a vector h0 2 Rn (i.e. a vector whose dimension is the
same as the first dimension of H) by padding H with zeros. Having d0 convolution
filters, one can generate d0 vectors as in equation 15.14 and stack them to generate a
matrix H 0 2 R(n�u+1)⇥d0 (or H 0 2 Rn⇥d0). Figure 15.2 provides an example of 1D
convolution.

The 1D convolution operation in equation 15.14 is the main building block of
the 1D CNNs. Similar to equation 15.12, let us assume H(l�1) represents the em-
beddings in the l layer with H(0)

t = x(t) where H(0)
t represents the t row of H(0)

and x(t) is the t observation. 1D CNN models apply multiple convolution filters to
H(l�1) as described above and produce a matrix to which activation and (some-
times) pooling operations are applied to produce H(l). The convolution filters are
the learnable parameters of the model. Hereafter, we use the term CNN to refer to
the general family of 1D convolutional neural networks.

15.2.3 Encoder-Decoder Framework and Model Training

A deep neural network model can typically be decomposed into an encoder and a de-
coder module. The encoder module takes the input and provides vector-representations
(or embeddings), and the decoder module takes the embeddings and provides pre-
dictions. The GNNs and sequence models described in Sections 15.2.1 and 15.2.2
correspond to the encoder modules of a full model; they provide node embeddings
Z and sequence embeddings H , respectively. The decoder is typically task-specific.
As an example, for a node classification task, the decoder can be a feed-forward neu-
ral network applied on a node embedding Zi provided by the encoder, followed by a
softmax function. Such a decoder provides as output a vector ŷ 2R|C| where C rep-
resents the classes, |C| represents the number of classes, and ŷ j shows the probabil-
ity of the node belonging to the j class. A similar decoder can be used for sequence
classification. As another example, for a link prediction problem, the decoder can
take as input the embeddings for two nodes, take the sigmoid of a dot-product of the
two node embeddings, and use the produced number as the probability of an edge
existing between the two nodes.

The parameters of a model are learned through optimization by minimizing a
task-specific loss function. For a classification task, for instance, we typically as-

15 Dynamic Graph Neural Networks 331

sume having access to a set of ground-truth labels Y where Yi, j = 1 if the i example
belongs to the j class and Yi, j = 0 otherwise. We learn the parameters of the model
by minimizing (e.g., using stochastic gradient descent) the cross entropy loss de-
fined as follows:

L =� 1
|Yi, j| Âi

Â
j
Yi, jlog(Ŷi, j) (15.15)

where |Yi, j| denotes the number of rows in Yi, j corresponding to the number of
labeled examples, and Ŷi, j is the probability of the i example belonging to the j
class according to the model. For other tasks, one may use other appropriate loss
functions.

15.3 Categories of Dynamic Graphs

Different applications give rise to different types of dynamic graphs and different
prediction problems. Before commencing the model development, it is crucial to
identify the type of dynamic graph and its static and evolving parts, and have a clear
understanding of the prediction problem. In what follows, we describe some general
categories of dynamic graphs, their evolution types, and some common prediction
problems for them.

15.3.1 Discrete vs. Continues

As pointed out in (Kazemi et al, 2020), dynamic graphs can be divided into discrete-
time and continuous-time categories. Here, we describe the two categories and point
out how discrete-time can be considered a specific case of continuous-time dynamic
graphs.

A discrete-time dynamic graph (DTDG) is a sequence [G(1),G(2), . . . ,G(t)] of
graph snapshots where each G(t) = (V (t),A(t),X(t)) has vertices V (t), adjacency
matrix A(t) and feature matrix X(t). DTDGs mainly appear in applications where
(sensory) data is captured at regularly-spaced intervals.

Example 15.1. Figure 15.3 shows three snapshots of an example DTDG. In the first
snapshot, there are three nodes. In the next snapshot, a new node v4 is added and a
connection is formed between this node and v2. Furthermore, the features of v1 are
updated. In the third snapshot, a new edge has been added between v3 and v4.

A special type of DTDGs is the spatio-temporal graphs where a set of entities are
spatially (i.e. in terms of closeness in space) and temporally correlated and data is
captured at regularly-spaced intervals. An example of such a spatio-temporal graph
is traffic data in a city or a region where traffic statistics at each road are computed at
regularly-spaced intervals; the traffic at a particular road at time t is correlated with

332 Seyed Mehran Kazemi

𝑣1 𝑣2

𝑣3

First Snapshot

𝑣1 𝑣2

𝑣3 𝑣4

𝑣1 𝑣2

𝑣3 𝑣4

𝒱(1) = {𝑣1,𝑣2,𝑣3}

𝐴(1) =
0 1 0
1 0 1
0 1 0

, 𝑋(1)=
0.1 1
0.2 1
0.2 2

…

𝒱(2) = {𝑣1,𝑣2,𝑣3,𝑣4}

𝐴(2) =
0 1
1 0

0 0
1 1

0 1
0 1

0 0
0 0

, 𝑋(2)=
0.1
0.2

2
1

0.2
0.5

2
1

𝒱(3) = {𝑣1,𝑣2,𝑣3, 𝑣4}

𝐴(3) =
0 1
1 0

0 0
1 1

0 1
0 1

0 1
1 0

, 𝑋(3)=
0.1
0.2

2
1

0.2
0.5

2
1

Second Snapshot Third Snapshot

Fig. 15.3: Three snapshots of an example DTDG. In the first snapshot, there are 3
nodes. In the second snapshot, a new node v4 is added and a connection is formed
between this node and v2. Moreover, the features of v1 are updated. In the third
snapshot, a new edge has been added between v3 and v4.

the traffic at the roads connected to it at time t (spatial correlation) as well as the
traffic at these roads and the ones connected to it at previous timestamps (temporal
correlation). In this example, the nodes in each G(t) may represent roads (or road
segments), the adjacency matrix A(t) may represent how the roads are connected,
and the feature matrix X(t) may represent the traffic statistics in each road at time t.

A continuous-time dynamic graph (CTDG) is a pair (G(t0),O) where G(t0) =
(V (t0),A(t0),X(t0)) is a static graph2 representing an initial state at time t0 and O is
a sequence of temporal observations/events. Each observation is a tuple of the form
(event type,event, timestamp) where event type can be a node or edge addition,
node or edge deletion, node feature update, etc., event represents the actual event
that happened, and timestamp is the time at which the event occurred.

Example 15.2. An example of a CTDG is a pair (G(t0),O) where G(t0) is the graph
in the first snapshot of Figure 15.3 and the observations are as follows:

O = [(add node,v4,20-05-2020),(add edge,(v2,v4),21-05-2020),

(Feature update,(v1, [0.1,2]),28-05-2020),(add edge,(v3,v4),04-06-2020)]

where, e.g., (add node,v4,20-05-2020) is an observation corresponding to a new
node v4 being added to the graph at time 20-05-2020.

At any point t � t0 in time, a snapshot G(t) (corresponding to a static graph) can
be obtained from a CTDG by updating G(t0) sequentially according to the obser-
vations O that occurred before (or at) time t. In some cases, multiple edges may
have been added between two nodes giving rise to multi-graphs; one may aggre-
gate the edges to convert the multi-graph into a simple graph if required. Therefore,
a DTDG can be viewed as a special case of a CTDG where only some regularly
spaced snapshots of the CTDG are available.

2 Note that we can have V (t0) = {} corresponding to a graph with no nodes. We can also have
A

(t0)
i, j = 0 for all i, j corresponding to a graph with no edges.

15 Dynamic Graph Neural Networks 333

Example 15.3. For the CTDG in Example 15.2, assume t0 = 01-05-2020 and we
only observe the state of the graph on the first day of each month (01-05-2020, 01-
06-2020 and 01-07-2020 for this example). In this case, the CTDG will reduce to
the DTDG snapshots in Figure 15.3.

15.3.2 Types of Evolution

For both DTDGs and CTDGs, various parts of the graph may change and evolve.
Here, we describe some of the main types of evolution. As a running example, we
use a dynamic graph corresponding to a social network where the nodes represent
users and the edges represent connections such as friendship.

Node addition/deletion: In our running example, new users may join the plat-
form resulting in new nodes being added to the graph, and some users may leave the
platform resulting in some nodes being removed from the graph.

Feature update: Users may have multiple features such as age, country of resi-
dence, occupation, etc. These features may change over time as users become older,
move to a new country, or change their occupation.

Edge addition/deletion: As time goes by, some users become friends resulting
in new edges and some people stop being friends resulting in some edges being
removed from the graph. As pointed out in (Trivedi et al, 2019), the observations
corresponding to events between two nodes may be categorized into association
and communication events. The former corresponds to events that lead to structural
changes in the graph and result in a long-lasting flow of information between the
nodes (e.g., the formation of new friendships in social networks). The latter cor-
responds to events that result in a temporary flow of information between nodes
(e.g., the exchange of messages in a social network). These two event categories
typically evolve at different rates and one may model them differently, especially in
applications where they are both present.

Edge weight updates: The adjacency matrix corresponding to the friendships
may be weighted where the weights represent the strength of the friendships (e.g.,
computed based on the duration of friendship or other features). In this case, the
strength of the friendships may change over time resulting in edge weight updates.

Relation updates: The edges between the users may be labeled where the label
indicates the type of the connection, e.g., friendship, engagement, and siblings. In
this case, the relation between two users may change over time (e.g., it may change
from friendship to engagement). One may see relation update as a special case of
edge evolution where one edge is deleted and another edge is added (e.g., the friend-
ship edge is removed and an engagement edge is added).

334 Seyed Mehran Kazemi

15.3.3 Prediction Problems, Interpolation, and Extrapolation

We review four types of prediction problems for dynamic graphs: node classifica-
tion/regression, graph classification, link prediction, and time prediction. Some of
these problems can be studied under two settings: interpolation and extrapolation.
They can also be studied under a transductive or inductive prediction setting. In
what follows, we will describe each prediction problem. We let be a (discrete-time
or continuous-time) dynamic graph containing information in a time interval [t0,t].

Node classification/regression: Let V (t) = {v1, . . . ,vn} represent the nodes in at
time t. Node classification at time t is the problem of classifying a node vi 2V (t) into
a predefined set of classes C. Node regression at time t is the problem of predicting
a continuous feature for a node vi 2 V (t). In the extrapolation setting, we make
predictions about a future state (i.e. t � t) and the predictions are made based on
the observations before or at t (e.g., forecasting the weather for the upcoming days).
In the interpolation setting, t0 t t and the predictions are made based on all the
observations (e.g., filling the missing values).

Graph classification: Let {1, 2, . . . , k} be a set of dynamic graphs. Graph clas-
sification is the problem of classifying each dynamic graph i into a predefined set of
classes C.

Link prediction: Link prediction is the problem of predicting new links between
the nodes of a dynamic graph. In the case of interpolation, the goal is to predict if
there was an edge between two nodes vi and v j at timestamp t0 t t (or a time
interval between t0 and t), assuming that vi and v j are in at time t. The interpolation
problem is also known as the completion problem and can be used to predict missing
links. In the case of extrapolation, the goal is to predict if there is going to be an
edge between two nodes vi and v j at a timestamp t > t (or a time interval after t)
assuming that vi and v j are in the at time t .

Time prediction: Time prediction is the problem of predicting when an event
happened or when it will happen. In the case of interpolation (sometimes called
temporal scoping), the goal is to predict the time t0 t t when an event occurred
(e.g., when two nodes vi and v j started or ended their connection). In the extrapola-
tion case (sometimes called time to event prediction), the goal is to predict the time
t > t when an event will happen (e.g., when a connection will be formed between
vi and v j).

Transductive vs. Inductive: The above problem definitions for node classifi-
cation/regression, link prediction, and time prediction correspond to a transductive
setting in which at the test time, predictions are to be made for entities already ob-
served during training. In the inductive setting, information about previously unseen
entities (or entirely new graphs) is provided at the test time and predictions are to
be made for these entities (see (Hamilton et al, 2017b; Xu et al, 2020a; Albooyeh
et al, 2020) for examples). The graph classification task is inductive by nature as it
requires making predictions for previously unseen graphs at the test time.

15 Dynamic Graph Neural Networks 335

15.4 Modeling Dynamic Graphs with Graph Neural Networks

In Section 15.2.1, we described how applying a GNN on a static graph G provides an
embedding matrix Z 2 Rn⇥d0 where n is the number of nodes, d0 is the embedding
dimension, and Zi represents the embedding for the i entity vi and can be used to
make predictions about it. For dynamic graphs, we wish to extend GNNs to obtain
embeddings Z(t) 2 Rnt⇥d0 for any timestamp t, where nt is the number of nodes in
the graph at time t and Z(t)

i captures the information about the i entity at time t. In
this section, we review several such extensions of GNNs. We mainly describe the
encoder part of the models for dynamic graphs as the decoder and the loss functions
can be defined similarly to Section 15.2.3.

15.4.1 Conversion to Static Graphs

A simple but sometimes effective approach for applying GNNs on dynamic graphs
is to first convert the dynamic graph into a static graph and then apply a GNN on the
resulting static graph. The main benefits of this approach include simplicity as well
as enabling the use of a wealth of GNN models and techniques for static graphs.
One disadvantage with this approach, however, is the potential loss of information.
In what follows, we describe two conversion approaches.

Temporal aggregation: We start with describing temporal aggregation for a par-
ticular type of dynamic graphs and then explain how it extends to more general
cases. Consider a DTDG [G(1),G(2), . . . ,G(t)] where each G(t) = (V (t),A(t),X(t))
such that V (1) = · · · =V (t) =V and X(1) = · · · =X(t) =X (i.e. the nodes and their
features are fixed over time and only the adjacency matrix evolves). Note that in this
case, the adjacency matrices have the same shape. One way to convert this DTDG
into a static graph is through a weighted aggregation of the adjacency matrices as
follows:

A(agg) =
t

Â
t=1

f(t,t)A(t) (15.16)

where f : R⇥R!R provides the weight for the t adjacency matrix as a function of
t and t . For extrapolation problems, a common choice for f is f(t,t) = exp(�q(t�
t)) corresponding to exponentially decaying the importance of the older adjacency
matrices (Yao et al, 2016). Here, q is a hyperparameter controlling how fast the
importance decays. For interpolation problems where a prediction is to be made for
a timestamp 1 t 0 t , one may define the function as f(t, t 0) = exp(�q |t 0 � t|)
corresponding to exponentially decaying the importance of the adjacency matrices
as they move further away from t 0. Through this aggregation, one can convert the
DTDG above into a static graph G = (V,A(agg),X) and subsequently apply a static
GNN model on it to make predictions. It is important to note that the aggregated
adjacency matrix is weighted (i.e. A(agg) 2 Rn⇥n) so one can only use the GNN
models that can handle weighted graphs.

336 Seyed Mehran Kazemi

𝑣1
(1) 𝑣2

(1)

𝑣3
(1)

𝑣1
(2) 𝑣2

(2)

𝑣3
(2) 𝑣4

(2)

𝑣1
(3) 𝑣2

(3)

𝑣3
(3) 𝑣4

(3)

First Snapshot Second Snapshot Third Snapshot

Fig. 15.4: An example of converting a DTDG into a static graph through temporal
unrolling. Solid lines represent the edges in the graph at different timestamps and
dashed lines represent the added edges. In this example, each node is connected
to the node corresponding to the same entity only in the previous timestamp (i.e.
w = 1).

In the case where node features also evolve, one may use a similar aggregation as
in equation 15.16 and compute X(agg) based on [X(1),X(2), . . . ,X(t)]. In the case
where nodes are added and removed, one possible way of aggregation is as follows.
Let V (s) = {v | v 2 V (1) [· · ·[V (t)} represent the set of all the nodes that existed
throughout time. We can expand every A(t) to a matrix in R|V (s)|⇥|V (s)| where the
values for the rows and columns corresponding to any node v 62V (t) are all 0s. The
feature vectors can be expanded similarly. Then, equation 15.16 can be applied on
the expanded adjacency and feature matrices. A similar aggregation can be done for
CTDGs by first converting it into a DTDG (see Section 15.3.1) and then applying
equation 15.16.

Example 15.4. Consider a DTDG with the three snapshots in Figure 15.3. We let
V (s) = {v1,v2,v3,v4}, add a row and a column of zeros to A(1), and add a row of
zeros to X(1). Then, we use equation 15.16 with some value of q to compute A(agg)

and X(agg). Then we apply a GNN on the aggregated graph.

Temporal unrolling: Another way of converting a dynamic graph into a static
graph is unrolling the dynamic graph and connecting the nodes corresponding to
the same object across time. Consider a DTDG [G(1),G(2), . . . ,G(t)] and let G(t) =
(V (t),A(t),X(t)) for t 2 {1, . . . ,t}. Let G(s) = (V (s),A(s),X(s)) represent the static
graph to be generated from the DTDG. We let V (s) = {v(t) | v 2V (t), t 2 {1, . . . ,t}}.
That is, every node v 2 V (t) at every timestamp t 2 {1, . . . ,t} becomes a new node
named v(t) in V (s) (so |V (s)| = Ât

t=1 |V (t)|). Note that this is different from the way
we constructed V (s) for temporal aggregation: here every node at every timestamp
becomes a node in V (s) whereas in temporal aggregation we took a union of the
nodes across timestamps. For every node v(t) 2 V (s), we let the features of v(t) in
X(s) to be the same as its features in X(t). If two nodes vi,v j 2 V (t) are connected
according to A(t), we connect the corresponding nodes in A(s). We also connect
each node v(t) to v(t 0) for t 0 2 {max(1, t �w), . . . , t � 1} so a node corresponding
to an entity at time t becomes connected to the nodes corresponding to the same

15 Dynamic Graph Neural Networks 337

entity at the previous w timestamps, where w is a hyperparameter. One may assign
different weights to these temporal edges in A(s) based on the difference between t
and t 0 (e.g., exponentially decaying the weight). Having constructed the static graph
G(s), one may apply a GNN model on it and, e.g., use the resulting embedding
for v(t)s (i.e. the nodes corresponding to the t timestamp of the DTDG) to make
predictions about the nodes.

Example 15.5. Figure 15.4 provides an example of temporal unrolling for the DTDG
in Figure 15.3 with w = 1. The graph has 11 nodes overall and so A(s) 2R11⇥11. The
node features are set according to the ones in Figure 15.3, e.g., the feature values
for v(2)

1 are 0.1 and 2.

15.4.2 Graph Neural Networks for DTDGs

One natural way of developing models for DTDGs is by combining GNNs with
sequence models; the GNN captures the information within the node connections
and the sequence model captures the information within their evolution. A large
number of the works on dynamic graphs in the literature follow this approach – see,
e.g., (Seo et al, 2018; Manessi et al, 2020; Xu et al, 2019a). Here, we describe some
generic ways of combining GNNs with sequence models.

GNN-RNN: Let be a DTDG with a sequence [G(1), . . . ,G(t)] of snapshots where
G(t) = (V (t),A(t),X(t)) for each t 2 {1, . . . ,t}. Suppose we want to obtain node em-
beddings at some time t t based on the observations at or before t. For simplicity,
let us assume V (1) = V (2) = · · · = V (t) = V , i.e. the nodes are the same through-
out time (in cases where the nodes change, one may use a similar strategy as in
Example 15.4).

We can apply a GNN to each of the G(t)s and obtain a hidden representation
matrix Z(t) whose rows correspond to node embeddings. Then, for the i node vi, we
obtain a sequence of embeddings [Z(1)

i ,Z(2)
i , . . . ,Z(t)

i]. These embeddings do not
yet contain temporal information. To incorporate the temporal aspect of the DTDG
into the embeddings and obtain a temporal embedding for vi at time t, we can feed
the sequence [Z(1)

i ,Z(2)
i , . . . ,Z(t)

i] into an RNN model defined in equation 27.1 by
replacing x(t) with Z(t)

i and using the hidden representation of the RNN model as
the temporal node embedding for vi. The temporal embedding for other nodes can be
obtained similarly by feeding their sequence of embeddings produced by the GNN
model to the same RNN model. The following formulae describe a variant of the
GNN-RNN model where the GNN is a GCN (defined in equation 15.1), the RNN is
an LSTM model, and the LSTM operations are applied to all nodes embeddings at
the same time (the formulae are applied sequentially for t in [1,2, . . . ,t]).

338 Seyed Mehran Kazemi

Z(t) = GCN(X(t),A(t)) (15.17)

I(t) = s
⇣
Z(t)W (ii) +H(t�1)W (ih) +b(i)

⌘
(15.18)

F (t) = s
⇣
Z(t)W (f i) +H(t�1)W (f h) +b(f)

⌘
(15.19)

C(t) = F (t)�C(t�1) +I(t)�Tanh
⇣
Z(t)W (ci) +H(t�1)W (ch) +b(c)

⌘
(15.20)

O(t) = s
⇣
Z(t)W (oi) +H(t�1)W (oh) +b(o)

⌘
(15.21)

H(t) = O(t)�Tanh
⇣
C(t)

⌘
(15.22)

where, similar to equations 15.7-15.11, I(t), F (t), and O(t) represent the input, for-
get and output gates for the nodes respectively, C(t) is the memory cell, H(t) is the
hidden state corresponding to the node embeddings for the first t observation, and
W (..)s and b(.)s are weight matrices and vectors. In the above formulae, when we
add a matrix Z(t)W (.i) +H(t�1)W (.h) with a bias vector b(.), we assume the bias
vector b(.) as added to every row of the matrix. H(0) and C(0) can be initialized with
zeros or learned from the data. H(t) corresponds to the temporal node embeddings
at time t and can be used to make predictions about them. We can summarize the
equations above into:

Z(t) = GCN(X(t),A(t)) (15.23)

H(t),C(t) = LST M(Z(t),H(t�1),C(t�1)) (15.24)

In a similar way, one can construct other variations of the GNN-RNN model such as
GCN-GRU, GAT-LSTM, GAT-RNN, etc. Figure 15.5 provides an overview of the
GCN-LSTM model.

RNN-GNN: In cases where the graph structure is fixed through time (i.e. A(1) =
· · · = A(t) = A) and only node features change, instead of first applying a GNN
model and then applying a sequence model to obtain temporal node embeddings,
one may apply the sequence model first to capture the temporal evolution of the
node features and then apply a GNN model to capture the correlations between the
nodes. We can create different variations of this generic model by using different
GNN and sequence models (e.g., LSTM-GCN, LSTM-GAT, GRU-GCN, etc.). The
formulation for a LSTM-GCN model is as follows:

H(t),C(t) = LST M(X(t),H(t�1),C(t�1)) (15.25)

Z(t) = GCN(H(t),A) (15.26)

with Z(t) containing the temporal node embeddings at time t. Note that RNN-GNN
is only appropriate if the the adjacency matrix is fixed over time; otherwise, RNN-
GNN fails to capture the information within the evolution of the graph structure.

GNN-BiRNN and BiRNN-GNN: In the case of GNN-RNN and RNN-GNN,
the obtained node embeddings H(t) contain information about the observations at

15 Dynamic Graph Neural Networks 339

LS
TM

 C
el

l𝐻(0)

𝐶(0) LS
TM

 C
el

l𝐻(1)

𝐶(1)

𝐻(2)

𝐶(2) LS
TM

 C
el

l𝐻(𝑇−1)

𝐶(𝑇−1)
…

…

𝐻(1) 𝐻(2) 𝐻(𝑇)…

𝒢(1)

𝑍(2) 𝑍(𝑇)

𝐻(𝑇)

𝐶(𝑇)

𝒢(2) 𝒢(𝑇)

GCN GCN GCN

𝑍(1)

Fig. 15.5: The GCN-LSTM model taking a sequence G(1),G(2), . . . ,G(t) as input
and producing hidden representations H(1),H(2), . . . ,H(t) as output. The opera-
tions in LSTM Cells are described in equations 15.18-15.22. The GCN modules
have shared parameters.

or before time t. This is appropriate for extrapolation problems. For interpolation
problems (e.g., when we want to predict missing links between edges at a timestamp
t t), however, we may want to use the observations before, at, or after time t. One
possible way of achieving this is by combining a GNN with a BiRNN so that the
BiRNN provides information from not only the observations at or before time t but
also after time t.

GNN-Transformer: Combining GNNs with Transformers can be done in a sim-
ilar way as in GNN-RNNs. We apply a GNN to each of the G(t)s and obtain a
hidden representation matrix Z(t) whose rows correspond to node embeddings.
Then for the i entity vi, we create a matrix H(0,i) such that H(0,i)

t = Z(t)
i + p(t)

(or H(0,i)
t = Z(t)

i p(t)) where p(t) is the positional encoding vector for position t.
That is, the t row of H(0,i) contains the embedding Z(t)

i of vi obtained by apply-
ing the GCN model on G(t), plus the positional encoding. The 0 superscript in
H(0,i) shows that H(0,i) corresponds to the input of a Transformer model in the
0 layer. Once we have H(0,i), we can apply an L-layer Transformer model (see
equations 15.2, 15.3 and 15.12) to obtain H(L,i) where H(L,i)

t corresponds to the
temporal embedding of vi at time t. For extrapolation, the matrix Ã in equation 15.3
is a lower triangular matrix with Ãi, j = 1 if i j and 0 otherwise; for interpolation,
Ã is a matrix of all 1s. The GCN-Transformer variant of the GNN-Transformer
model can be described using the following equations:

340 Seyed Mehran Kazemi

Z(t) = GCN(X(t), A(t)) f or t 2 {1,2, . . . ,t} (15.27)

H(0,i)
t = Z(t)

i +p(t) f or t 2 {1,2, . . . ,t}, i 2 {1,2, . . . , |V |} (15.28)

H(L,i) = Trans f ormer(H(0,i), Ã) f or i 2 {1,2, . . . , |V |} (15.29)

GNN-CNN: In a similar way as GNN-RNN and GNN-Transformer, one can
combine GNNs with CNNs where the GNN provides [Z(1),Z(2), . . . ,Z(t)], then the
embeddings [Z(1)

i ,Z(2)
i , . . . ,Z(t)

i] for each node vi are stacked into a matrix H(0,i)

similar to the GNN-Transformer model, and then a 1D CNN model is applied on
H(0,i) (see Section 15.2.2) to provide the final node embeddings.

Creating Deeper Models: Consider the GCN-LSTM model in Figure 15.5. The
output of the GCN module is a sequence [Z(1),Z(2), . . . ,Z(t)] and the outputs of the
LSTM module is a sequence of hidden representation matrices [H(1),H(2), . . . ,H(t)].
Let us call the output of the GCN module as [Z(1,1),Z(1,2), . . . ,Z(1,t)] and the
output of the LSTM module as [H(1,1),H(1,2), . . . ,H(1,t)] where the added su-
perscript 1 indicates that these are the hidden representations created at layer 1.
One may consider each H(1, t) as the new node features for the nodes in G(t) and
run a GCN module (with separate parameters from the initial GCN) again to ob-
tain [Z(2,1),Z(2,2), . . . ,Z(2,t)]. Then, another LSTM module may operate on these
matrices to produce [H(2,1),H(2,2), . . . ,H(2,t)]. Stacking L of these GCN-LSTM
blocks produces [H(L,1),H(L,2), . . . ,H(L,t)] as output. These hidden matrices can
then be used for making predictions about the nodes. The l layer of this model can
be formulated as below (the formulae are applied sequentially for t in [1, . . . ,t]):

Z(l, t) = GCN(H(l�1, t),A(t)) (15.30)

H(l, t),C(l, t) = LST M(Z(l, t),H(l, t�1),C(l, t�1)) (15.31)

where H(0,t) = X(t) for t 2 {1, . . . ,t}. The above two equations define what is
called a GCN-LSTM block. Other blocks can be constructed using similar combina-
tions.

15.4.3 Graph Neural Networks for CTDGs

Recently, developing models that operate on CTDGs without converting them to
DTDGs (or converting them to static graphs) has been the subject of several studies.
One class of models for CTDGs is based on extensions of the sequence models
described in Section 15.2.2, especially RNNs. The general idea behind these models
is to consume the observations sequentially and update the embedding of a node
whenever a new observation is made about that node (or, in some works, about one
of its neighbors). Before describing GNN-based approaches for CTDGs, we briefly
describe some of the RNN-based models for CTDGs.

Consider a CTDG with G(t0) = (V (t0),A(t0),X(t0)) with A(t0)
i, j = 0 for all i, j (i.e.

no initial edges) and observations O whose only type is edge additions. Since the

15 Dynamic Graph Neural Networks 341

only observation types are edge additions, for this CTDG, the nodes and their fea-
tures are fixed over time. Let Z(t�) represent the node embeddings right before time
t (initially, Z(t0) =X(t0) or Z(t0) =X(t0)W where W is a weight matrix with learn-
able parameters). Upon making an observation (AddEdge,(vi,v j), t) corresponding
to a new directed edge between two nodes vi,v j 2V , the model developed in (Kumar
et al, 2019b) updates the embeddings for vi and v j as follows:

Z(t)
i = RNNsource((Z

(t�)
j || D ti || f), Z(t�)

i) (15.32)

Z(t)
j = RNNtarget((Z

(t�)
i || D t j || f), Z(t�)

j) (15.33)

where RNNsource and RNNtarget are two RNNs with different weights3, D ti and D t j
represent the time elapsed since vi’s and v j’s previous interactions respectively4, f
represents a vector of features corresponding to edge features (if any), || indicates
concatenation, and Z(t)

i and Z(t)
j represent the updated embeddings at time t. The

first RNN takes as input a new observation (Z(t�)
j || D ti || f) and the previous

hidden state of a node Z(t�)
i and provides an updated representation (similarly for

the second RNN). Besides learning a temporal embedding Z(t) as described above,
in (Kumar et al, 2019b) another embedding vector is also learned for each entity
that is fixed over time and captures the static features of the nodes. The two embed-
dings are then concatenated to produce the final embedding that is used for making
predictions.

In Trivedi et al (2017), a similar strategy is followed to develop a model for
CTDGs with multi-relational graphs in which two custom RNNs update the node
embeddings for the source and target nodes once a new labeled edge is observed
between them. In Trivedi et al (2019), a model is developed that is similar to
the above models but closer in nature to GNNs. Upon making an observation
(AddEdge,(vi,v j), t), the node embedding for vi is updated as follows (and simi-
larly for v j):

Z(t)
i = RNN((zN (v j)D ti), Z

(t�)
i) (15.34)

where zN (v j) is an embedding that is computed based on a custom attention-
weighted aggregation of the embeddings of v j and its neighbors at time t, and D ti is
defined similarly as in equation 15.32. Unlike equation 15.32 where the RNN up-
dates the embedding of vi based on the embedding of v j alone, in equation 15.34
the embedding of vi is updated based on an aggregation of the embeddings from the
first-order neighborhood of v j which makes it close in nature to GNNs.

Many of the existing RNN-based approaches for CTDGs only compute the node
embeddings based on their immediate neighboring nodes (or nodes that are 1-hop

3 The reason for using two RNNs is to allow the source and target nodes of a directed graph to be
updated differently upon making the observation (AddEdge,(vi,v j), t). If the graph is undirected,
one may use a single RNN.
4 If this is the first interaction of vi (or v j), then D ti (or D t j) can be the time elapsed since t0.

342 Seyed Mehran Kazemi

away from them) and do not take into account the nodes that are multi-hops away.
We now describe a GNN-based model for CTDGs named temporal graph attention
networks (TGAT) and developed in (Xu et al, 2020a) that computes node embed-
dings based on the k-hop neighborhood of the nodes (i.e. based on the nodes that
are at most k hops away). Being a GNN-based model, TGAT can learn embeddings
for new nodes that are added to a graph and can be used for inductive settings where
at the test time, predictions are to be made for previously unseen nodes.

Similar to the Transformer model, TGAT removes the recurrence and instead
relies on self-attention and an extension of positional encoding to continuous time
encoding named Time2Vec. In Time2Vec (Kazemi et al, 2019), time t (or a delta of
time as in equation 15.32 and equation 15.34) is represented as a vector z(t) defined
as follows:

z(t)
i =

(
wit +ji, if i = 0.

sin(wit +ji), if 1 i k.
(15.35)

where w and j are vectors with learnable parameters. TGAT uses a specific case of
Time2Vec where the linear term is removed and the parameters j are fixed to 0s and
p
2 s similar to equation 15.13. We refer the reader to Kazemi et al (2019); Xu et al
(2020a) for theoretical and practical motivations of such a time encoding.

Now we describe how TGAT computes node embeddings. For a node vi and
timestamp t, let N (t)

i represent the set of nodes that interacted with vi at or before
time t and the timestamps for the interaction. Each element of N (t)

i is of the form
(v j, tk) where tk t. The l layer of TGAT computes the embedding h(t,l,i) for vi at
time t in layer l using the following steps:

1. For any node vi, h(t,0,i) (corresponding to the embedding of vi in the 0 layer in
time t) is assumed to be equal to Xi for any value of t.

2. A matrix K(t,l,i) with |N (t)
i | rows is created such that for each (v j, tk) 2N (t)

i ,
K(t,l,i) has a row (h(tk,l�1, j) || z(t�tk)) where h(tk,l�1, j) corresponds to the em-
bedding of v j in layer (l�1) at the time tk of its interaction with vi and z(t�tk)

is an encoding for the delta time (t � tk) as in equation 15.35. Note that each
h(tk,l�1, j) is computed recursively using the same steps outlined here.

3. A vector q(t,l,i) is computed as (h(t,l�1,i)z(0)) where h(t,l�1,i) is the embedding
of vi at time t in layer (l� 1) and z(0) is an encoding for a delta of time equal
to 0 as in equation 15.35.

4. q(t,l,i) is used to determine how much vi should attend to each row of K(t,l,i)

corresponding to the representation of its neighbors5. Attention weights a(t,l,i)

are computed using equation 15.12 where the j element of a(t,l,i) is computed
as a(t,l,i)

j = a(q(t,l,i),K(t,l,i)
j ;q (l)).

5. Having the attention weights, a representation h̃(t,l,i) is computed for vi using
equation 15.2 where the attention matrix Â(l) is replaced with the attention
vector a(t,l,i).

5 For simplicity, here we describe a single-head attention-based GNN version of TGAT; in the
original work, a multi-head version is used (see equation 15.5 for details.)

15 Dynamic Graph Neural Networks 343

6. Finally, h(t,l,i) = FF(l)(h(t,l�1,i)h̃(t,l,i)) computes the representation for node vi
at time t in layer l where FF(l) is a feed-forward neural network in layer l.

An L-layer TGAT model computes node embeddings based on the L-hop neigh-
borhood of a node.

Suppose we run a 2-layer TGAT model on a temporal graph where vi interacted
with v j at time t1 < t and v j interacted with vk at time t2 < t1. The embedding h(t,2,i)

is computed based on the embedding h(t1,1, j) which is itself computed based on the
embedding h(t2,0,k). Since we are now at 0 layer, h(t2,0,k) in TGAT is approximated
with Xk thus ignoring the interactions vk has had before time t2. This may be sub-
optimal if vk has had important interactions before t2 as these interactions are not
reflected on h(t1,1, j) and hence not reflected on h(t,2,i). In (Rossi et al, 2020), this
problem is remedied by using a recurrent model (similar to those introduced at the
beginning of this subsection) that provides node embeddings at any time based on
their previous local interactions, and initializing h(t,0,i)s with these embeddings.

15.5 Applications

In this chapter, we provide some examples of real-world problems that have been
formulated as predictions over dynamic graphs and modeled using GNNs. In partic-
ular, we review applications in computer vision, traffic forecasting, and knowledge
graphs. This is by no means a comprehensive list; other application domains include
recommendation systems Song et al (2019a), physical simulation of object trajecto-
ries Kipf et al (2018), social network analysis Min et al (2021), automated software
bug triaging Wu et al (2021a), and many more.

15.5.1 Skeleton-based Human Activity Recognition

Human activity recognition from videos is a well-studied problem in computer vi-
sion with several applications. Given a video of a human, the goal is to classify
the activity performed by the human in the video into a pre-defined set of classes
such as walking, running, dancing, etc. One possible approach for this problem is
to make predictions based on the human body skeleton as the skeleton conveys im-
portant information for human action recognition. In this subsection, we provide a
dynamic graph formulation of this problem and a modeling approach based mainly
on (a simplified version of) the approach of (Yan et al, 2018a).

Let us begin with formulating the skeleton-based activity recognition problem as
reasoning over a dynamic graph. A video is a sequence of frames and each frame
can be converted into a set of n nodes corresponding to the key points in the skeleton
using computer vision techniques (see, e.g., (Cao et al, 2017)). These n nodes each
have a feature vector representing their (2D or 3D) coordinates in the image frame.
The human body specifies how these key points are connected to each other. With

344 Seyed Mehran Kazemi

0

12

3
4

5

6

7

8

9

10

11

12

13

14 15
16 17

0

12

34

5

6

7

8

9

10

11

12

13

14 15
16 17

0

12

3

4

5

6

78

9

10

11

12

13

14 15
16

17

…

(1) (2) … (T)

Fig. 15.6: The human skeleton represented as a graph for each snapshot of a video.
The nodes represent the key points and the edges represent connections between
these key points. The t graph corresponds to the human skeleton obtained from the
t frame of a video.

this description, we can formulate the problem as reasoning over a DTDG consisting
of a sequence [G(1),G(2), . . . ,G(t)] of graphs where each G(t) = (V (t),A(t),X(t))
corresponds to the t frame of a video with V (t) representing the set of key points in
the t frame, A(t) representing their connections, and X(t) representing their features.
An example is provided in Figure 15.6. One may notice that V (1) = · · · = V (t) = V
and A(1) = · · · = A(t) = A, i.e. the nodes and the adjacency matrices remain fixed
throughout the sequence because they correspond to the key points and how they
are connected in the human body. For instance, in the graphs of Figure 15.6, the
node numbered as 3 is always connected to the nodes numbered as 2 and 4. The
feature matrices X(t), however, keep changing as the coordinates of the key points
change in different frames. The activity recognition can now be cast as classifying
a dynamic graph into a set of predefined classes C.

The approach employed in (Yan et al, 2018a) is to convert the above DTDG into
a static graph through temporal unrolling (see Section 15.4.1). In the static graph,
the node corresponding to a key point at time t is connected to other key points at
time t according to the human body (or, in other words, according to A(t)) as well
as the nodes representing the same key point and its neighbors in the previous w
timestamps. Once a static graph is constructed, a GNN can be applied to obtain em-
beddings for every joint at every timestamp. Since activity recognition corresponds
to graph classification in this formulation, the decoder may consist of a (max, mean,
or another type of) pooling layer on the node embeddings to obtain a graph em-
bedding followed by a feed-forward network and a softmax layer to make class
predictions.

In the l layer of the GNN in (Yan et al, 2018a), the adjacency matrix is multiplied
element-wise to a mask matrix M (l) with learnable parameters (i.e. A�M (l) is
used as the adjacency matrix). M (l) can be considered a data-independent attention
map that learns weights for the edges in A. The goal of M (l) is to learn which
connections are more important for activity recognition. Multiplying by M (l) only
allows for changing the weight of the edges in A but it cannot add new edges.
Connecting the key points according to the human body may arguably not be the

15 Dynamic Graph Neural Networks 345

best choice as, e.g., the connection between the hands is important in recognizing
the clapping activity. In (Li et al, 2019e), the adjacency is summed with two other
matrices B(l) and C(l) (i.e. A+B(l) +C(l) is used as the adjacency) where B(l)

is a data-independent attention matrix similar to M (l) and C(l) is a data-dependent
attention matrix. Adding two matrices B(l) and C(l) to A allows for not only chang-
ing the edge weights in A but also adding new edges.

Instead of converting the dynamic graph to a static graph through temporal un-
rolling and applying a GNN on the static graph as in the previous two works, in Shi
et al (2019b), (among other changes) a GNN-CNN model is used. One can use
other combinations of a GNN and a sequence model (e.g., GNN-RNN) to obtain
embeddings for joints at different timestamps. Note that activity recognition is not
an extrapolation problem (i.e. the goal is not to predict the future based on the past).
Therefore, to obtain the joint embeddings at time t, one may use information not
only from G(t 0) where t 0 t but also from timestamps t 0 > t. This can be done by
using, e.g., a GNN-BiRNN model (see Section 15.4.2).

15.5.2 Traffic Forecasting

For urban traffic control, traffic forecasting plays a paramount role. To predict the
future traffic of a road, one needs to consider two important factors: spatial depen-
dence and temporal dependence. The traffics in different roads are spatially depen-
dent on each other as future traffic in one road depends on the traffic in the roads
that are connected to it. The spatial dependence is a function of the topology of the
road networks. There is also temporal dependence for each road because the traffic
volume on a road at any time depends on the traffic volume at the previous times.
There are also periodic patterns as, e.g., the traffic in a road may be similar at the
same times of the day or at the same times of the week.

Early approaches for traffic forecasting mainly focused on temporal dependen-
cies and ignored the spatial dependencies (Fu et al, 2016). Later approaches aimed
at capturing spatial dependencies using convolutional neural networks (CNNs) (Yu
et al, 2017b), but CNNs are typically restricted to grid structures. To enable captur-
ing both spatial and temporal dependencies, several recent works have formulated
traffic forecasting as reasoning over a dynamic graph (DTDGs in particular).

We first start by formulating traffic forecasting as a reasoning problem over a
dynamic graph. One possible formulation is to consider a node for each road seg-
ment and connect two nodes if their corresponding road segments intersect with
each other. The node features are the traffic flow variables (e.g., speed, volume, and
density). The edges can be directed, e.g., to show the flow of the traffic in one-way
roads, or undirected, showing that traffic flows in both directions. The structure of
the graph can also change over time as, e.g., some road segments or some intersec-
tions may get (temporarily) closed. One may record the traffic flow variables and
the state of the roads and intersections at regularly-spaced time intervals resulting
in a DTDG. Alternatively, one may record the variables at different (asynchronous)

346 Seyed Mehran Kazemi

time intervals resulting in a CTDG. The prediction problem is a node regression
problem as we require to predict the traffic flow for the nodes, and it is an extrapo-
lation problem as we need to predict the future state of the flow. The problem can
be studied under a transductive setting where a model is trained based on the traffic
data in a region and tested for making predictions about the same region. It can also
be studied under an inductive setting where a model is trained based on the traffic
data in multiple regions and is tested on new regions.

In (Zhao et al, 2019c), a model is proposed for transductive traffic forecasting
in which the problem is formulated as reasoning over a DTDG with a sequence
[G(1),G(2), . . . ,G(t)] of snapshots. The graph structure is considered to be fixed (i.e.
no changes in road or intersection conditions) but the node features, corresponding
to traffic flow features, change over time. The proposed model is a GCN-GRU model
(see Section 15.4.2) where the GCN captures the spatial dependencies and the GRU
captures the temporal dependencies. At any time t, the model provides a hidden
representation matrix H(t) based on the information at or before t; the rows of this
matrix correspond to the node embeddings. These embeddings can then be used to
make predictions about the traffic flow in the next timestamp(s). Assuming Ŷ (t+1)

represents the predictions for the next timestamp and Y (t+1) represents the ground
truth, the model is trained by minimizing an L2-regularized sum of the absolute
errors ||Ŷ (t+1)�Y (t+1)||.

As explained in Section 15.2.2, RNN-based models (e.g., the GCN-GRU model
above) typically require sequential computations and are not amenable to paral-
lelization. In (Yu et al, 2018a), the temporal dependencies are captured using CNNs
instead of RNNs. The proposed model contains multiple blocks of CNN-GNN-CNN
where the GNN is a generalization of GCNs to multi-dimensional tensors and the
CNNs are gated.

The two works described so far consider the adjacency matrix to be fixed in dif-
ferent timestamps. As explained earlier, however, the adjacency matrix may change
over time, e.g., due to accidents and roadblocks. In (Diao et al, 2019), the change
in the adjacency matrix is taken into account through estimating the change in the
topology of the roads based on the short-term traffic data.

15.5.3 Temporal Knowledge Graph Completion

Knowledge graphs (KGs) are databases of facts. A KG contains a set of facts in the
form of triples (vi,r j,vk) where vi and vk are called the subject and object entities
and r j is a relation. A KG can be viewed as a directed multi-relational graph with
nodes V = {v1, . . . ,vn}, relations R = {r1, . . . ,rm}, and m adjacency matrices where
the j adjacency matrix corresponds to the relations of type r j between the nodes
according to the triples.

A temporal knowledge graph (TKG) contains a set of temporal facts. Each fact
may be associated with a single timestamp indicating the time when the event spec-
ified by the fact occurred, or a time interval indicating the start and end timestamps.

15 Dynamic Graph Neural Networks 347

The facts with a single timestamp typically represent communication events and the
facts with a time interval typically represent associative events (see Section 15.3.2)6.
Here, we focus on facts with a single timestamp for which a TKG can be defined as a
set of quadruples of the form (vi,r j,vk, t) where t indicates the time when (vi,r j,vk)
occurred. Depending on the granularity of the timestamps, one may think of a TKG
as a DTDG or a CTDG.

TKG completion is the problem of learning models based on the existing tempo-
ral facts in a TKG to answer queries of the type (vi,r j,?, t) (or (?,r j,vk, t)) where the
correct answer is an entity v 2 V such that (vi,r j,v, t) (or (v,r j,vk, t)) has not been
observed during training. It is mainly an interpolation problem as queries are to be
answered at a timestamp t based on the past, present, and future facts. Currently, the
majority of the models for TKG completion are not based on GNNs (e.g., see (Goel
et al, 2020; Garcı́a-Durán et al, 2018; Dasgupta et al, 2018; Lacroix et al, 2020)).
Here, we describe a GNN-based approach that is mainly based on the work in (Wu
et al, 2020b).

Since TKGs correspond to multi-relational graphs, to develop a GNN-based
model that operates on a TKG we first need a relational GNN. Here, we describe
a model named relational graph convolution network (RGCN) (Schlichtkrull et al,
2018) but other relational GNN models can also be used (see, e.g., (Vashishth et al,
2020)). Whereas GCN projects all neighbors of a node using the same weight ma-
trix (see Section 15.2.1), RGCN applies relation-specific projections. Let R̂ be a a
set of relations that includes every relation in R = {r1, . . . ,rm} as well as a self-loop
relation r0 where each node has the relation r0 only with itself. As is common in
directed graphs (see, e.g., (Marcheggiani and Titov, 2017)) and specially for multi-
relational graphs (see, e.g., (Kazemi and Poole, 2018)), for each relation r j 2 R we
also add an auxiliary relation r�1

j to R̂ where vi has relation r�1
j with vk if and only

if vk has relation r j with vi. The l layer of an RGCN model can then be described as
follows:

Z(l) = s
�
Â
r2R̂

D(r)�1
A(r)Z(l�1)W (l,r)� (15.36)

where A(r) 2Rn⇥n represents the adjacency matrix corresponding to relation r, D(r)

is the degree matrix of A(r) with D(r)
i,i representing the number of incoming relations

of type r for the i node, D(r)�1 is a normalization term7, W (l,r) is a relation-specific
weight matrix for layer l, Z(l�1) represents the node embeddings in the (l-1) layer,
and Z(l) represents the updated node embeddings in the l layer. If initial features
X are provided as input, Z(0) can be set to X . Otherwise, Z(0) can either be set as
1-hot encodings where Z(0)

i is a vector whose elements are all zeros except in the

6 This, however, is not always true as one may break a fact such as (vi,LivedIn,v j) with a time
interval [2010,2015] (meaning from 2010 until 2015) into a fact (vi,StartedLivingIn,v j) with a
timestamp of 2010 and another fact (vi,EndedLivingIn,v j) with a timestamp of 2015.
7 One needs to handle the cases where D(r)

i,i = 0 to avoid numerical issues.

348 Seyed Mehran Kazemi

i position where it is 1, or it can be randomly initialized and then learned from the
data.

In (Wu et al, 2020b), a TKG is formulated as a DTDG consisting of a sequence
of snapshots [G(1),G(2), . . . ,G(t)] of multi-relational graphs. Each G(t) contains the
same set of entities V and relations R (corresponding to all the entities and relations
in the TKG) and contains the triples (vi,r j,vk, t) from the TKG that occurred at time
t. Then, RGCN-BiGRU and RGCN-Transformer models are developed (see Sec-
tion 15.4.2) that operate on the DTDG formulation of the TKG where the RGCN
model provides the node embeddings at every timestamp and the BiGRU and Trans-
former models aggregate the temporal information. Note that in each G(t) there may
be several nodes with no incoming and outgoing edges (and also no features since
TKGs typically do not have node features). RGCN does not learn a representation
for these nodes as there exists no information about them in G(t). To handle this,
special BiGRU and Transformer models are developed in (Wu et al, 2020b) that
handle missing values.

The RGCN-BiGRU and RGCN-Transformer models provide node embeddings
H(t) at any timestamp t. To answer a query such as (vi,r j,?, t), one can compute the
plausibility score of (vi,r j,vk, t) for every vk 2V and select the entity that achieves
the highest score. A common approach to find the score for an entity vk for the above
query is to use the TransE decoder Bordes et al (2013) according to which the score
is �||H(t)

i +R j�H(t)
k || where H(t)

i and H(t)
k correspond to the node embeddings

for vi and vk at time t (provided by the RGCN) and R is a matrix with learnable
parameters which has m = |R| rows each corresponding to an embedding for a re-
lation. TransE and its extensions are known to make unrealistic assumptions about
the types and properties of the relations Kazemi and Poole (2018), so, alternatively,
one may use other decoders that has been developed within the knowledge graph
embedding community (e.g., the models in (Kazemi and Poole, 2018; Trouillon
et al, 2016)).

When the timestamps in the TKG are discrete and there are not many of them,
one can use a similar approach as above to answer queries of the form (vi,r j,vk,?)
through finding the score for every t in the set of discrete timestamps and selecting
the one that achieves the highest score (see, e.g., (Leblay and Chekol, 2018)). Time
prediction for TKGs has been also studied in an extrapolation setting where the goal
is to predict when an event is going to happen in the future. This has been mainly
done using temporal point processes as decoders (see, e.g., (Trivedi et al, 2017,
2019)).

15.6 Summary

Graph-based techniques are emerging as leading approaches in the industry for ap-
plication domains with relational information. Among these techniques, graph neu-
ral networks (GNNs) are currently among the top-performing approaches. While
GNNs and other graph-based techniques were initially developed mainly for static

15 Dynamic Graph Neural Networks 349

graphs, extending these approaches to dynamic graphs has been the subject of sev-
eral recent studies and has found success in several important areas. In this chapter,
we reviewed the techniques for applying GNNs to dynamic graphs. We also re-
viewed some of the applications of dynamic GNNs in different domains including
computer vision, traffic forecasting, and knowledge graphs.

Editor’s Notes: In the universe, the only thing unchanged is “change” it-
self, so do networks. Hence extending techniques for simple, static net-
works to those for dynamic ones is inevitably the trend while this domain
is progressing. While there is a fast-increasing research body for dynamic
networks in recent years, much more efforts are needed in order for sub-
stantial progress in the key issues such as scalability and validity discussed
in Chapter 5 and other chapters. Extensions of the techniques in Chapters
9-18 are also needed. Many real-world applications radically speaking, re-
quires to consider dynamic network, such as recommender system (Chapter
19) and urban intelligence (Chapter 27). So they could also benefit from the
technique advancement toward dynamic networks.

