
Chapter 14
Graph Neural Networks: Graph Structure
Learning

Yu Chen and Lingfei Wu

Abstract Due to the excellent expressive power of Graph Neural Networks (GNNs)
on modeling graph-structure data, GNNs have achieved great success in various
applications such as Natural Language Processing, Computer Vision, recommender
systems, drug discovery and so on. However, the great success of GNNs relies on
the quality and availability of graph-structured data which can either be noisy or
unavailable. The problem of graph structure learning aims to discover useful graph
structures from data, which can help solve the above issue. This chapter attempts
to provide a comprehensive introduction of graph structure learning through the
lens of both traditional machine learning and GNNs. After reading this chapter,
readers will learn how this problem has been tackled from different perspectives,
for different purposes, via different techniques, as well as its great potential when
combined with GNNs. Readers will also learn promising future directions in this
research area.

14.1 Introduction

Recent years have seen a significantly increasing amount of interest in Graph Neu-
ral Networks (GNNs) (Kipf and Welling, 2017b; Bronstein et al, 2017; Gilmer
et al, 2017; Hamilton et al, 2017b; Li et al, 2016b) with a wide range of appli-
cations in Natural Language Processing (Bastings et al, 2017; Chen et al, 2020p),
Computer Vision (Norcliffe-Brown et al, 2018), recommender systems (Ying et al,
2018b), drug discovery (You et al, 2018a) and so on. GNN’s powerful ability in
learning expressive graph representations relies on the quality and availability of
graph-structured data. However, this poses some challenges for graph representation

Yu Chen
Facebook AI, e-mail: hugochan2013@gmail.com

Lingfei Wu
JD.COM Silicon Valley Research Center, e-mail: lwu@email.wm.edu

297

hugochan2013@gmail.com
lwu@email.wm.edu

298 Yu Chen and Lingfei Wu

learning with GNNs. On the one hand, in some scenarios where the graph structure
is already available, most of the GNN-based approaches assume that the given graph
topology is perfect, which does not necessarily hold true because i) the real-word
graph topology is often noisy or incomplete due to the inevitably error-prone data
measurement or collection; and ii) the intrinsic graph topology might merely repre-
sent physical connections (e.g the chemical bonds in molecule), and fail to capture
abstract or implicit relationships among vertices which can be beneficial for certain
downstream prediction task. On the other hand, in many real-world applications
such as those in Natural Language Processing or Computer Vision, the graph rep-
resentation of the data (e.g., text graph for textual data or scene graph for images)
might be unavailable. Early practice of GNNs (Bastings et al, 2017; Xu et al, 2018d)
heavily relied on manual graph construction which requires extensive human effort
and domain expertise for obtaining a reasonably performant graph topology during
the data preprocessing stage.

In order to tackle the above challenges, graph structure learning aims to dis-
cover useful graph structures from data for better graph representation learning with
GNNs. Recent attempts (Chen et al, 2020m,o; Liu et al, 2021; Franceschi et al,
2019; Ma et al, 2019b; Elinas et al, 2020; Velickovic et al, 2020; Johnson et al,
2020) focus on joint learning of graph structures and representations without re-
sorting to human effort or domain expertise. Different sets of techniques have been
developed for learning discrete graph structures and weighted graph structures for
GNNs. More broadly speaking, graph structure learning has been widely studied in
the literature of traditional machine learning in both unsupervised learning and su-
pervised learning settings (Kalofolias, 2016; Kumar et al, 2019a; Berger et al, 2020;
Bojchevski et al, 2017; Zheng et al, 2018b; Yu et al, 2019a; Li et al, 2020a). Besides,
graph structure learning is also closely related to important problems such as graph
generation (You et al, 2018a; Shi et al, 2019a), graph adversarial defenses (Zhang
and Zitnik, 2020; Entezari et al, 2020; Jin et al, 2020a,e) and transformer mod-
els (Vaswani et al, 2017).

This chapter is organized as follows. We will first introduce how graph structure
learning has been studied in the literature of traditional machine learning, prior to
the recent surge of GNNs (section 14.2). We will introduce existing works on both
unsupervised graph structure learning (section 14.2.1) and supervised graph struc-
ture learning (section 14.2.2). Readers will later see how some of the introduced
techniques originally developed for traditional graph structure learning have been
revisited and improve graph structure learning for GNNs. Then we will move to
our main focus of this chapter which is graph structure learning for GNNs in sec-
tion 14.3. This part will cover various topics including joint graph structure and
representation learning for both unweighted and weighted graphs (section 14.3.1),
and the connections to other problems such as graph generation, graph adversarial
defenses and transformers (section 14.3.2). We will highlight some future directions
in section 24.5 including robust graph structure learning, scalable graph structure
learning, graph structure learning for heterogeneous graphs, and transferable graph
structure learning. We will summarize this chapter in section 14.5.

14 Graph Neural Networks: Graph Structure Learning 299

14.2 Traditional Graph Structure Learning

Graph structure learning has been widely studied from different perspectives in the
literature of traditional machine learning, prior to the recent surge of Graph Neural
Networks. Before we move to the recent achievements of graph structure learning
in the field of Graph Neural Networks, which is the main focus of this chapter,
in this section, we will first examine this challenging problem through the lens of
traditional machine learning.

14.2.1 Unsupervised Graph Structure Learning

The task of unsupervised graph structure learning aims to directly learn a graph
structure from a set of data points in an unsupervised manner. The learned graph
structure may be later consumed by subsequent machine learning methods for var-
ious prediction tasks. The most important benefit of this kind of approaches is that
they do not require labeled data such as ground-truth graph structures for super-
vision, which could be expensive to obtain. However, because the graph structure
learning process does not consider any particular downstream prediction task on the
data, the learned graph structure might be sub-optimal for the downstream task.

14.2.1.1 Graph Structure Learning from Smooth Signals

Graph structure learning has been extensively studied in the literature of Graph Sig-
nal Processing (GSP). It is often referred to as the graph learning problem in the lit-
erature whose goal is to learn the topological structure from smooth signals defined
on the graph in an unsupervised manner. These graph learning techniques (Jebara
et al, 2009; Lake and Tenenbaum, 2010; Kalofolias, 2016; Kumar et al, 2019a; Kang
et al, 2019; Kumar et al, 2020; Bai et al, 2020a) typically operate by solving an opti-
mization problem with certain prior constraints on the properties (e.g., smoothness,
sparsity) of graphs. Here, we introduce some representative prior constraints defined
on graphs which have been widely used for solving the graph learning problem.

Before introducing the specific graph learning techniques, we first provide the
formal definition of a graph and graph signals. Consider a graph G = {V ,E } with
the vertex set V of cardinality n and edge set E , its adjacency matrix A 2 Rn⇥n

governs its topological structure where Ai, j > 0 indicates there is an edge connecting
vertex i and j and Ai, j is the edge weight. Given an adjacency matrix A, we can
further obtain the graph Laplacian matrix L = D � A where Di,i = Â j Ai, j is the
degree matrix whose off-diagonal entries are all zero.

A graph signal is defined as a function that assigns a scalar value to each vertex
of a graph. We can further define multi-channel signals X 2 Rn⇥d on a graph that
assigns a d dimensional vector to each vertex, and each column of the feature matrix

300 Yu Chen and Lingfei Wu

X can be considered as a graph signal. Let Xi 2 Rd denote the graph signal defined
on the i-th vertex.
Fitness. Early works (Wang and Zhang, 2007; Daitch et al, 2009) on graph learning
utilized the neighborhood information of each data point for graph construction by
assuming that each data point can be optimally reconstructed using a linear com-
bination of its neighbors. Wang and Zhang (2007) proposed to learn a graph with
normalized degrees by minimizing the following objective,

Â
i

||Xi �Â
j

Ai, jXj||2 (14.1)

where Â j Ai, j = 1, Ai, j � 0.
Similarly, Daitch et al (2009) proposed to minimize a measure of fitness that

computes a weighted sum of the squared distance from each vertex to the weighted
average of its neighbors, formulated as follows:

Â
i

||Di,iXi �Â
j

Ai, jXj||2 = ||LX ||2F (14.2)

where ||M||F = (Âi, j M2
i, j)

1/2 is the Frobenius norm.
Smoothness. Smoothness is another widely adopted assumption on natural graph
signals. Given a set of graph signals X 2 Rn⇥d defined on an undirected weighted
graph with an adjacency matrix A 2 Rn⇥n, the smoothness of the graph signals is
usually measured by the Dirichlet energy (Belkin and Niyogi, 2002),

W(A,X) =
1
2 Â

i, j
Ai, j||Xi �Xj||2 = tr(X>LX) (14.3)

where L is the Laplacian matrix and tr(·) denotes the trace of a matrix. Lake and
Tenenbaum (2010); Kalofolias (2016) proposed to learn a graph by minimizing
W(A,X) which forces neighboring vertices to have similar features, thus enforcing
graph signals to change smoothly on the learned graph. Notably, solely minimizing
the above smoothness loss can lead to the trivial solution A = 0.
Connectivity and Sparsity. In order to avoid the trivial solution caused by solely
minimizing the smoothness loss, Kalofolias (2016) imposed additional constraints
on the learned graph,

�a~1>log(A~1)+b ||A||2F (14.4)

where the first term penalizes the formation of disconnected graphs via the logarith-
mic barrier, and the second term controls sparsity by penalizing large degrees due
to the first term. Note that~1 denotes the all-ones vector. As a result, this improves
the overall connectivity of the graph, without compromising sparsity.

Similarly, Dong et al (2016) proposed to solve the following optimization prob-
lem:

14 Graph Neural Networks: Graph Structure Learning 301

min
L2Rn⇥n,Y2Rn⇥p

||X �Y ||2F +a tr(Y >LY)+b ||L||2F

s.t. tr(L) = n,

Li, j = L j,i 0, i 6= j,

L ·~1 =~0

(14.5)

which is equivalent to finding jointly the graph Laplacian L and Y (i.e., a “noise-
less” version of the zero-mean observation X), such that Y is close to X , and in the
meantime Y is smooth on the sparse graph. Note that the first constraint acts as a
normalization factor and permits to avoid trivial solutions, and the second and third
constraints guarantee that the learned L is a valid Laplacian matrix that is positive
semidefinite.

Ying et al (2020a) aimed to learn a sparse graph under Laplacian constrained
Gaussian graphical model, and proposed a nonconvex penalized maximum likeli-
hood method by solving a sequence of weighted l1-norm regularized sub-problems.
Maretic et al (2017) proposed to learn a sparse graph signal model by alternating
between a signal sparse coding and a graph update step.

In order to reduce the computational complexity of solving the optimization
problem, many approximation techniques (Daitch et al, 2009; Kalofolias and Per-
raudin, 2019; Berger et al, 2020) have been explored. Dong et al (2019) provided a
good literature review on learning graphs from data from a GSP perspective.

14.2.1.2 Spectral Clustering via Graph Structure Learning

Graph structure learning has also been studied in the field of clustering analysis.
For example, in order to improve the robustness of spectral clustering methods for
noisy input data, Bojchevski et al (2017) assumed that the observed graph A can be
decomposed into the corrupted graph Ac and the good (i.e., clean) graph Ag, and it
is beneficial to only perform the spectral clustering on the clean graph. They hence
proposed to jointly perform the spectral clustering and the decomposition of the ob-
served graph, and adopted a highly efficient block coordinate-descent (alternating)
optimization scheme to approximate the objective function. Huang et al (2019b)
proposed a multi-view learning model which simultaneously conducts multi-view
clustering and learns similarity relationships between data points in kernel spaces.

14.2.2 Supervised Graph Structure Learning

The task of supervised graph structure learning aims to learn a graph structure from
data in a supervised manner. They may or may not consider a particular downstream
prediction task during the model training phase.

302 Yu Chen and Lingfei Wu

14.2.2.1 Relational Inference for Interacting Systems

Relational inference for interacting systems aims to study how objects in com-
plex systems interact. Early works considered a fixed or fully-connected interaction
graph (Battaglia et al, 2016; van Steenkiste et al, 2018) while modeling the interac-
tion dynamics among objects. Sukhbaatar et al (2016) proposed a neural model to
learn continuous communication among a dynamically changing set of agents where
the communication graph changes over time as agents move, enter and exit the envi-
ronment. Recent efforts (Kipf et al, 2018; Li et al, 2020a) have been made to simul-
taneously infer the latent interaction graph and model the interaction dynamics. Kipf
et al (2018) proposed a variational autoencoder (VAE) (Kingma and Welling, 2014)
based approach which learns to infer the interaction graph structure and model the
interaction dynamics among physical objects simultaneously from their observed
trajectories in an unsupervised manner. The discrete latent code of VAE represents
edge connections of the latent interaction graph, and both the encoder and decoder
take the form of a GNN to model the interaction dynamics among objects. Because
the latent distribution of VAE is discrete, the authors adopted a continuous relax-
ation in order to use the reparameterization trick (Kingma et al, 2014). While Kipf
et al (2018) focused on inferring a static interaction graph, Li et al (2020a) designed
a dynamic mechanism to evolve the latent interaction graph adaptively over time. A
Gated Recurrent Unit (GRU) (Cho et al, 2014a) was applied to capture the history
information and adjust the prior interaction graph.

14.2.2.2 Structure Learning in Bayesian Networks

A Bayesian network (BN) is a Probabilistic Graphical Model (PGM) which en-
codes conditional dependencies between random variables via a directed acyclic
graph (DAG), where each random variable is represented as a node in DAG. The
problem of learning the BN structure is important yet challenging in Bayesian net-
works research. Most existing works on BN learning focus on score-based learn-
ing of DAGs, and aim to find a DAG with the maximal score where a score indi-
cates how well any candidate DAG is supported by the observed data (and any prior
knowledge). Early works treat BN learning as a combinatorial optimization problem
which is NP-hard due to the intractable search space of DAGs scaling superexpo-
nentially with the number of nodes. Some efficient methods have been proposed
for exact BN learning via dynamic programming (Koivisto and Sood, 2004; Silan-
der and Myllymäki, 2006) or integer programming (Jaakkola et al, 2010; Cussens,
2011). Recently, Zheng et al (2018b) proposed to formulate the traditional combi-
natorial optimization problem into a purely continuous optimization problem over
real matrices with a smooth equality constraint ensuring acyclicity of the graph. The
resulting problem can hence be efficiently solved by standard numerical algorithms.
A follow-up work (Yu et al, 2019a) leveraged the expressive power of GNNs, and
proposed a variational autoencoder (VAE) based deep generative model with a vari-

14 Graph Neural Networks: Graph Structure Learning 303

ant of the structural constraint to learn the DAG. The VAE was parameterized by a
GNN that can naturally handle both discrete and vector-valued random variables.

14.3 Graph Structure Learning for Graph Neural Networks

Graph structure learning has recently been revisited in the field of GNNs so as to
handle the scenarios where the graph-structured data is noisy or unavailable. Recent
attempts in this line of research mainly focus on joint learning of graph structures
and representations without resorting to human effort or domain expertise. fig. 14.1
shows the overview of graph structure learning for GNNs. Besides, we see several
important problems being actively studied (including graph generation, graph ad-
versarial defenses and transformer models) in recent years which are closely related
to graph structure learning for GNNs. We will discuss their connections and differ-
ences in this section.

Graph Structure Learning for
Graph Neural Networks

Learning Discrete Graph
Structures

Variational Inference

Bilevel Optimization

Reinforcement Learning

Learning Weighted Graph
Structures

Graph Similarity Metric
Learning Techniques

Node Embedding Based
Similarity Metric Learning

Structure-aware Similarity
Metric Learning

Graph Sparsification
Techniques

KNN-style Sparsification

Epsilon-neighborhood
Sparsification

Graph Regularization
Techniques

Smoothness

Connectivity

Sparsity

Combining Intrinsic Graph Structures
and Implicit Graph Structures

Learning Paradigms

Joint Learning of Graph
Structures and Representations

Adaptive Learning of Graph
Structures and Representations

Iterative Learning of Graph
Structures and Representations

Fig. 14.1: The overview of graph structure learning for GNNs.

304 Yu Chen and Lingfei Wu

14.3.1 Joint Graph Structure and Representation Learning

In recent practice of GNNs, joint graph structure and representation learning has
drawn a growing attention. This line of research aims to jointly optimize the graph
structure and GNN parameters toward the downstream prediction task in an end-
to-end manner, and can be roughly categorized into two groups: learning discrete
graph structures and learning weighted adjacency matrices. The first kind of ap-
proaches (Chen et al, 2018e; Ma et al, 2019b; Zhang et al, 2019d; Elinas et al,
2020; Pal et al, 2020; Stanic et al, 2021; Franceschi et al, 2019; Kazi et al, 2020)
operate by sampling a discrete graph structure (i.e., corresponding to a binary ad-
jacency matrix) from the learned probabilistic adjacency matrix, and then feeding
the graph to a subsequent GNN in order to obtain the task prediction. Because the
sampling operation breaks the differentiability of the whole learning system, tech-
niques such as variational inference (Hoffman et al, 2013) or Reinforcement Learn-
ing (Williams, 1992) are applied to optimize the learning system. Considering that
discrete graph structure learning often has the optimization difficulty introduced by
the non-differentiable sampling operation and it is hence difficult to learn weights on
edges, the other kind of approaches (Chen et al, 2020m; Li et al, 2018c; Chen et al,
2020o; Huang et al, 2020a; Liu et al, 2019b, 2021; Norcliffe-Brown et al, 2018)
focuses on learning the weighted (and usually sparse) adjacency matrix associated
to a weighted graph which will be later consumed by a subsequent GNN for the
prediction task. We will discuss these two types of approaches in great detail next.
Before discussing different techniques for joint graph structure and representation
learning, let’s first formulate the joint graph structure and representation learning
problem.

14.3.1.1 Problem Formulation

Let the graph G = (V ,E) be represented as a set of n nodes vi 2 V with an initial
node feature matrix X 2Rd⇥n, and a set of m edges (vi,v j) 2 E (binary or weighted)
formulating an initial noisy adjacency matrix A(0) 2Rn⇥n. Given a noisy graph input
G := {A(0),X} or only a node feature matrix X 2Rd⇥n, the joint graph structure and
representation learning problem we consider aims to produce an optimized graph
G ⇤ := {A(⇤),X} and its corresponding node embeddings Z = f (G ⇤,q) 2Rh⇥n, with
respect to certain downstream prediction task. Here, we denote f as a GNN and q
as its model parameters.

14.3.1.2 Learning Discrete Graph Structures

In order to deal with the issue of uncertainty on graphs, many of the existing works
on learning discrete graph structures regard the graph structure as a random variable
where a discrete graph structure can be sampled from certain probabilistic adja-
cency matrix. They usually leverage various techniques such as variational infer-

14 Graph Neural Networks: Graph Structure Learning 305

ence (Chen et al, 2018e; Ma et al, 2019b; Zhang et al, 2019d; Elinas et al, 2020; Pal
et al, 2020; Stanic et al, 2021), bilevel optimization (Franceschi et al, 2019), and Re-
inforcement Learning (Kazi et al, 2020) to jointly optimize the graph structure and
GNN parameters. Notably, they are often limited to the transductive learning setting
where the node features and graph structure are fully observed during both the train-
ing and inference stages. In this section, we introduce some representative works on
this topic and show how they approach the problem from different perspectives.

Franceschi et al (2019) proposed to jointly learn a discrete probability distribu-
tion on the edges of the graph and the parameters of GNNs by treating the task as a
bilevel optimization problem Colson et al (2007), formulated as,

min
~q2H N

EAsBer(~q)[F(wq ,A)]

such that wq = argminw EAsBer(~q)[L(w,A)]
(14.6)

where H N denotes the convex hull of the set of all adjacency matrices for N nodes,
and L(w,A) and F(wq ,A) are both task-specific loss functions measuring the differ-
ence between GNN predictions and ground-truth labels which are computed on a
training set and validation set, respectively. Each edge (i.e., node pair) of the graph
is independently modeled as a Bernoulli random variable, and an adjacency matrix
A s Ber(~q) can thus be sampled from the graph structure distribution parameterized
by ~q . The outer objective (i.e., the first objective) aims to find an optimal discrete
graph structure given a GCN and the inner objective (i.e., the second objective) aims
to find the optimal parameters wq of a GCN given a graph. The authors approxi-
mately solved the above challenging bilevel problem with hypergradient descent.

Considering that real-word graphs are often noisy, Ma et al (2019b) viewed the
node features, graph structure and node labels as random variables, and modeled the
joint distribution of them with a flexible generative model for the graph-based semi-
supervised learning problem. Inspired by random graph models from the network
science field (Newman, 2010), they assumed that the graph is generated based on
node features and labels, and thus factored the joint distribution as the following:

p(X ,Y,G) = p~q (G|X ,Y)p~q (Y |X)p(X) (14.7)

where X , Y and G are random variables corresponding to the node features, labels
and graph structure, and ~q are learnable model parameters. Note that the condi-
tional probabilities p~q(G|X ,Y) and p~q(Y |X) can be any flexible parametric families of

distributions as long as they are differentiable almost everywhere w.r.t. ~q . In the
paper, p~q(G|X ,Y) is instantiated with either latent space model (LSM) (Hoff et al,
2002) or stochastic block models (SBM) (Holland et al, 1983). During the inference
stage, in order to infer the missing node labels denoted as Ymiss, the authors lever-
aged the recent advances in scalable variational inference (Kingma and Welling,
2014; Kingma et al, 2014) to approximate the posterior distribution p~q(Ymiss|X ,Yobs,G)

via a recognition model q~f(Ymiss|X ,Yobs,G) parameterized by ~f where Yobs denotes the

306 Yu Chen and Lingfei Wu

observed node labels. In the paper, q~f(Ymiss|X ,Yobs,G) is instantiated with a GNN. The

model parameters ~q and ~f are jointly optimized by maximizing the Evidence Lower
Bound (Bishop, 2006) of the observed data (Yobs,G) conditioned on X .

Elinas et al (2020) aimed to maximize the posterior over the binary adjacency
matrix given the observed data (i.e., node features X and observed node labels Y o),
formulated as,

p(A|X ,Y o) µ p~q(Y o|X ,A)p(A) (14.8)

where p~q(Y o|X ,A) is a conditional likelihood which can be further factorized follow-
ing the conditional independence assumption,

p~q(Y o|X ,A) = ’
yi2Y o

p~q(yi|X ,A)

p~q(yi|X ,A) = Cat(yi|~pi)
(14.9)

where Cat(yi|~pi) denotes a categorical distribution, and is the i-th row of a probabil-
ity matrix P 2 RN⇥C modeled by a GCN, namely, P = GCN(X ,A,~q). As for the
prior distribution over the graph p(A), the authors considered the following form,

p(A) = ’
i, j

p(Ai, j)

p(Ai, j) = Bern(Ai, j|ro
i, j)

(14.10)

where Bern(Ai, j|ro
i, j) is a Bernoulli distribution over the adjacency matrix Ai, j with

parameter ro
i, j. In the paper, ro

i, j = r1Ai, j + r2(1 � Ai, j) was constructed to encode
the degree of belief on the absence and presence of observed links with hyperpa-
rameters 0 < r1,r2 < 0. Note that Ai, j is the observed graph structure which can
potentially be perturbed. If there is no input graph available, a KNN graph can be
employed. Given the above formulations, the authors developed a stochastic varia-
tional inference algorithm by leveraging the reparameterization trick (Kingma et al,
2014) and Concrete distributions techniques (Maddison et al, 2017; Jang et al, 2017)
to optimize the graph posterior p(A|X ,Y o) and the GCN parameters ~q jointly.

Kazi et al (2020) designed a probabilistic graph generator whose underlying
probability distribution is computed based on pair-wise node similarity, formulated
as,

pi, j = e�t||Xi�Xj || (14.11)

where t is a temperature parameter, and Xi is the node embedding of node vi. Given
the above edge probability distribution, they adopted the Gumbel-Top-k trick (Kool
et al, 2019) to sample an unweighted KNN graph which would be fed into a GNN-
based prediction network. Note that the sampling operation breaks the differentia-
bility of the model, the authors thus exploited Reinforcement Learning to reward
edges involved in a correct classification and penalize edges which led to misclassi-
fication.

14 Graph Neural Networks: Graph Structure Learning 307

14.3.1.3 Learning Weighted Graph Structures

Unlike the kind of graph structure learning approaches focusing on learning a dis-
crete graph structure (i.e., binary adjacency matrix) for the GNN, there is a class of
approaches instead focusing on learning a weighted graph structure (i.e., weighted
adjacency matrix). In comparison with learning a discrete graph structure, learning
a weighted graph structure has several advantages. Firstly, optimizing a weighted
adjacency matrix is much more tractable than optimizing a binary adjacency matrix
because the former can be easily achieved by SGD techniques (Bottou, 1998) or
even convex optimization techniques (Boyd et al, 2004) while the later often has to
resort to more challenging techniques such as variational inference (Hoffman et al,
2013), Reinforcement Learning (Williams, 1992) and combinatorial optimization
techniques (Korte et al, 2011) due to its non-differentiability. Secondly, a weighted
adjacency matrix is able to encode richer information on edges compared to a binary
adjacency matrix, which could benefit the subsequent graph representation learning.
For example, the widely used Graph Attention Network (GAT) (Veličković et al,
2018) essentially aims to learn edge weights for the input binary adjacency matrix
which benefit the subsequent message passing operations. In this subsection, we
will first introduce some common graph similarity metric learning techniques as
well as graph sparsification techniques widely used in existing works for learning
a sparse weighted graph by considering pair-wise node similarity in the embedding
space. Some representative graph regularization techniques will be later introduced
for controlling the quality of the learned graph structure. We will then discuss the
importance of combining both of the intrinsic graph structures and learned implicit
graph structures for better learning performance. Finally, we will cover some im-
portant learning paradigms for the joint learning of graph structures and graph rep-
resentations that have been successfully adopted by existing works.

Graph Similarity Metric Learning Techniques

As introduced in section 14.2.1.1, prior works on unsupervised graph structure
learning from smooth signals also aim to learn a weighted adjacency matrix from
data. Nevertheless, they are incapable of handling inductive learning setting where
there are unseen graphs or nodes in the inference phase. This is because they of-
ten learn by directly optimizing an adjacency matrix based on certain prior con-
straints on the graph properties. Many works on discrete graph structure learning
(section 14.3.1.2) have trouble conducting inductive learning as well on account of
the similar reason.

Inspired by the success of attention-based techniques (Vaswani et al, 2017;
Veličković et al, 2018) for modeling relationships among objects, many recent
works in the literature cast graph structure learning as similarity metric learning
defined upon the node embedding space assuming that the node attributes more or
less contain useful information for inferring the implicit topological structure of the
graph. One biggest advantage of this strategy is that the learned similarity metric

308 Yu Chen and Lingfei Wu

function can be later applied to an unseen set of node embeddings to infer a graph
structure, thus enabling inductive graph structure learning.

For data deployed in non-Euclidean domains such as graph data, the Euclidean
distance is not necessarily the optimal metric for measuring node similarity. Com-
mon options for metric learning include cosine similarity (Nguyen and Bai, 2010),
radial basis function (RBF) kernel (Yeung and Chang, 2007) and attention mech-
anisms (Bahdanau et al, 2015; Vaswani et al, 2017). In general, according to the
types of raw information sources needed, we group the similarity metric learning
functions into two categories: Node Embedding Based Similarity Metric Learning
and Structure-aware Similarity Metric Learning. Next, we will introduce some rep-
resentative metric learning functions from both categories which have been success-
fully adopted in prior works on graph structure learning for GNNs.

Node Embedding Based Similarity Metric Learning

Node embedding based similarity metric learning functions are designed to learn a
pair-wise node similarity matrix based on node embeddings which ideally encode
important semantic meanings of the nodes for graph structure learning.

Attention-based Similarity Metric Functions Most similarity metric functions
proposed so far are based on the attention mechanism Bahdanau et al (2015);
Vaswani et al (2017). Norcliffe-Brown et al (2018) adopted a simple metric function
which computes the dot product between any pair of node embeddings (eq. (14.12)).
Given its limited learning capacity, it might have difficulty learning an optimal graph
structure.

Si, j =~v>
i ~v j (14.12)

where S 2 Rn⇥n is a node similarity matrix, and ~vi is the vector representation of
node vi.

To enrich the learning capacity of dot product, Chen et al (2020n) proposed a
modified dot product by introducing learnable parameters, formulated as follows:

Si, j = (~vi �~u)>~v j (14.13)

where � denotes element-wise multiplication, and ~u is a non-negative trainable
weight vector which learns to highlight different dimensions of the node embed-
dings. Note that the output similarity matrix S is asymmetric.

Chen et al (2020o) proposed a more expressive version of dot product by intro-
ducing a weight matrix, formulated as follows:

Si, j = ReLU(W~vi)
>ReLU(W~v j) (14.14)

where W is a d ⇥d weight matrix, and ReLU(x) = max(0,x) is a rectified linear unit
(ReLU) (Nair and Hinton, 2010) which is used here to enforce the sparsity of the
output similarity matrix.

Similar to (Chen et al, 2020o), On et al (2020) introduced a learnable mapping
function to node embeddings before computing the dot product, and applied a ReLU

14 Graph Neural Networks: Graph Structure Learning 309

function to enforce sparsity, formulated as follows:

Si, j = ReLU(f (~vi)
> f (~v j)) (14.15)

where f : R ! R is a single-layer feed-forward network without non-linear activa-
tion.

Besides using ReLU to enforce sparsity, Yang et al (2018c) applied the square
operation to stabilize training, and the row-normalization operation to obtain a nor-
malized similarity matrix, formulated as follows:

Si, j =
(ReLU((W1~vi)>W2~v j +b)2

Âk (ReLU((W1~vk)>W2~v j +b)2 (14.16)

where W1 and W2 are d ⇥d weight matrices, and b is a scalar parameter.
Unlike Chen et al (2020o) that applied the same linear transformation to node

embeddings, Huang et al (2020a) applied different linear transformations to the two
node embeddings when computing the pair-wise node similarity, formulated as fol-
lows:

Si, j = softmax((W1~vi)
>W2~v j) (14.17)

where W1 and W2 are d ⇥ d weight matrices, and softmax(~z)i = ezi

Â j ez j is applied to
obtain a row-normalized similarity matrix.

Velickovic et al (2020) aimed at graph structure learning in a temporal setting
where the implicit graph structure to be learned changes over time. At each time
step t, they first computed the pair-wise node similarity a(t)

i, j using the same attention
mechanism as in (Huang et al, 2020a), and based on that, they further obtained an
“aggregated” adjacency matrix S(t)

i, j by deriving a new edge for node i by choosing
node j with the maximal ~ai j. The whole process is formulated as follows:

a(t)
i, j = softmax((W1~v

(t)
i)>W2~v

(t)
j)

eS(t)
i, j = µ(t)

i
eS(t�1)

i, j +(1� µ(t)
i)I

j=argmaxk(a
(t)
i,k)

S(t)
i, j = eS(t)

i, j _ eS(t)
j,i

(14.18)

where µ(t)
i is a learnable binary gating mask, _ denotes logical disjunction between

the two operands to enforce symmetry, and W1 and W2 are d ⇥ d weight matrices.
Because the argmax operation makes the whole learning system non-differentiable,
the authors provided the ground-truth graph structures for supervision at each time
step.

Cosine-based Similarity Metric Functions Chen et al (2020m) proposed a multi-
head weighted cosine similarity function which aims at capturing pair-wise node
similarity from multiple perspectives, formulated as follows:

310 Yu Chen and Lingfei Wu

Sp
i, j = cos(~wp �~vi,~wp �~v j)

Si, j =
1
m

m

Â
p=1

Sp
i j

(14.19)

where ~wp is a learnable weight vector associated to the p-th perspective, and has the
same dimension as the node embeddings. Intuitively, Sp

i, j computes the pair-wise
cosine similarity for the p-th perspective where each perspective considers one part
of the semantics captured in the embeddings. Moreover, as observed in (Vaswani
et al, 2017; Veličković et al, 2018), employing multi-head learners is able to stabilize
the learning process and increase the learning capacity.

Kernel-based Similarity Metric Functions Besides attention-based and cosine-
based similarity metric functions, researchers also explored to apply kernel-based
metric functions for graph structure learning. Li et al (2018c) applied a Gaussian
kernel to the distance between any pair of node embeddings, formulated as follows:

d(~vi,~v j) =
q

(~vi �~v j)>M(~vi �~v j)

S(~vi,~v j) =
�d(~vi,~v j)

2s2

(14.20)

where s is a scalar hyperparameter which determines the width of the Gaussian
kernel, and d(~vi,~v j) computes the Mahalanobis distance between the two node em-
beddings ~vi and ~v j. Notably, M is the covariance matrix of the node embeddings
distribution if we assume all the node embeddings of the graph are drawn from
the same distribution. If we set M = I, the Mahalanobis distance reduces to the
Euclidean distance. To make M a symmetric and positive semi-definite matrix, the
authors let M = WW> where W is a d ⇥d learnable weight matrix. We can also re-
gard W as the transform basis to the space where we measure the Euclidean distance
between two vectors.

Similarly, Henaff et al (2015) first computed the Euclidean distance between
any pair of node embeddings, and then applied a Gaussian Kernel or a self-tuning
diffusion kernel (Zelnik-Manor and Perona, 2004), formulated as follows:

d(~vi,~v j) =
q

(~vi �~v j)>(~vi �~v j)

S(~vi,~v j) =
�d(~vi,~v j)

s2

Slocal(~vi,~v j) =
�d(~vi,~v j)

sis j

(14.21)

where Slocal(~vi,~v j) defines a self-tuning diffusion kernel whose variance is locally
adapted around each node. Specifically, si is computed as the distance d(~vi,~vik)
corresponding to the k-th nearest neighbor ik of node i.

14 Graph Neural Networks: Graph Structure Learning 311

Structure-aware Similarity Metric Learning

When learning implicit graph structures from data, it might be beneficial to utilize
the intrinsic graph structures as well if they are available.

Utilizing Intrinsic Edge Embeddings for Similarity Metric Learning Inspired
by recent works on structure-aware transformers (Zhu et al, 2019b; Cai and Lam,
2020) which brought the intrinsic graph structure to the self-attention mechanism in
the transformer architecture, some works designed structure-aware similarity metric
functions which additionally consider the edge embeddings of the intrinsic graph.
Liu et al (2019b) introduced a structure-aware attention mechanism as the following:

Sl
i, j = softmax(~u>tanh(W [~hl

i ,~h
l
j,~vi,~v j,~ei, j])) (14.22)

where ~vi denotes the node attributes for node i, ~ei, j represents the edge attributes
between node i and j,~hl

i is the vector representation of node i in the l-th GNN layer,
and ~u and W are trainable weight vector and weight matrix, respecitively.

Similarly, Liu et al (2021) proposed a structure-aware global attention mecha-
nism for learning pair-wise node similarity, formulated as follows,

Si, j =
ReLU(W Q~vi)>(ReLU(W K~vi)+ReLU(W R~ei, j))p

d
(14.23)

where ~ei, j 2 Rde is the embedding of the edge connecting node i and j, W Q,W K 2
Rd⇥dv , W R 2 Rd⇥de are learnable weight matrices, and d, dv and de are the dimen-
sions of hidden vectors, node embeddings and edge embeddings, respectively.

Utilizing Intrinsic Edge Connectivity Information for Similarity Metric Learn-
ing In the case where only the edge connectivity information is available in the in-
trinsic graph, Jiang et al (2019b) proposed a masked attention mechanism for graph
structure learning, formulated as follows,

Si, j =
Ai, j exp(ReLU(~u>|~vi �~v j|))

Âk Ai,k exp(ReLU(~u>|~vi �~vk|))
(14.24)

where Ai, j is the adjacency matrix of the intrinsic graph and ~u is a weight vec-
tor with the same dimension as node embeddings ~vi. This idea of using masked
attention to incorporate the initial graph topology shares the same spirit with the
GAT (Veličković et al, 2018) model.

Graph Sparsification Techniques

The aforementioned similarity metric learning functions all return a weighted ad-
jacency matrix associated to a fully-connected graph. A fully-connected graph is
not only computationally expensive but also might introduce noise such as unim-
portant edges. In real-word applications, most graph structures are much more

312 Yu Chen and Lingfei Wu

sparse. Therefore, it can be beneficial to explicitly enforce sparsity to the learned
graph structure. Besides applying the ReLU function in the similarity metric func-
tions (Chen et al, 2020o; On et al, 2020; Yang et al, 2018c; Liu et al, 2021; Jiang
et al, 2019b), various graph sparsification techniques have been adopted to enhance
the sparsity of the learned graph structure.

Norcliffe-Brown et al (2018); Klicpera et al (2019b); Chen et al (2020o,n); Yu
et al (2021a) adopted a KNN style sparsification operation to obtain a sparse ad-
jacency matrix from the node similarity matrix computed by the similarity metric
learning function, formulated as follows:

Ai,: = topk(Si,:) (14.25)

where topk is a KNN-style operation. Specifically, for each node, only the K nearest
neighbors (including itself) and the associated similarity scores are kept, and the
remaining similarity scores are masked off.

Klicpera et al (2019b); Chen et al (2020m) enforced a sparse adjacency matrix
by considering only the e-neighborhood for each node, formulated as follows:

Ai, j =

⇢
Si, j Si, j > e
0 otherwise (14.26)

where those elements in S which are smaller than a non-negative threshold e are all
masked off (i.e., set to zero).

Graph Regularization Techniques

As discussed earlier, many works in the field of Graph Signal Processing typically
learn the graph structure from data by directly optimizing the adjacency matrix to
minimize the constraints defined based on certain graph properties, without con-
sidering any downstream tasks. On the contrary, many works on graph structure
learning for GNNs aim to optimize a similarity metric learning function (for learn-
ing graph structures) toward the downstream prediction task. However, they do not
explicitly enforce the learned graph structure to have some common properties (e.g.,
smoothness) presented in real-word graphs.

Chen et al (2020m) proposed to optimize the graph structures by minimizing a
hybrid loss function combining both the task prediction loss and the graph regular-
ization loss. They explored three types of graph regularization losses which pose
constrains on the smoothness, connectivity and sparsity of the learned graph.

Smoothness The smoothness property assumes neighboring nodes to have similar
features.

W(A,X) =
1

2n2 Â
i, j

Ai, j||Xi �Xj||2 =
1
n2 tr(X>LX) (14.27)

where tr(·) denotes the trace of a matrix, L = D�A is the graph Laplacian, and Di,i =
Â j Ai, j is the degree matrix. As can be seen, minimizing W(A,X) forces adjacent

14 Graph Neural Networks: Graph Structure Learning 313

nodes to have similar features, thus enforcing smoothness of the graph signals on
the graph associated with A. However, solely minimizing the smoothness loss will
result in the trivial solution A = 0. We might also want to pose other constraints to
the graph.

Connectivity The following equation penalizes the formation of disconnected
graphs via the logarithmic barrier.

�1
n

~1>log(A~1) (14.28)

where n is the number of nodes.

Sparsity The following equation controls sparsity by penalizing large degrees.

1
n2 ||A||2F (14.29)

where || · ||F denotes the Frobenius norm of a matrix.
In practice, solely minimizing one type of graph regularization losses might not

be desirable. For instance, solely minimizing the smoothness loss will result in the
trivial solution A = 0. Therefore, it could be beneficial to balance the trade-off
among different types of desired graph properties by computing a linear combi-
nation of the various graph regularization losses, formulated as follows:

a
n2 tr(X>LX)+

�b
n

~1>log(A~1)+
g
n2 ||A||2F (14.30)

where a , b and g are all non-negative hyperparameters for controlling the smooth-
ness, connectivity and sparsity of the learned graph.

Besides the above graph regularization techniques, other prior assumptions such
as neighboring nodes tend to share the same label (Yang et al, 2019c) and learned
implicit adjacency matrix should be close to the intrinsic adjacency matrix (Jiang
et al, 2019b) have been adopted in the literature.

Combining Intrinsic Graph Structures and Implicit Graph Structures

Recall that one of the most important motivations for graph structure learning is
that the intrinsic graph structure (if it is available) might be error-prone (e.g., noisy
or incomplete) and sub-optimal for the downstream prediction task. However, the
intrinsic graph typically still carries rich and useful information regarding the opti-
mal graph structure for the downstream task. Hence, it could be harmful to totally
discard the intrinsic graph structure.

A few recent works (Li et al, 2018c; Chen et al, 2020m; Liu et al, 2021) proposed
to combine the learned implicit graph structure with the intrinsic graph structure for
better downstream prediction performance. The rationales are as follows. First of
all, they assume that the optimized graph structure is potentially a “shift” (e.g., sub-

314 Yu Chen and Lingfei Wu

structures) from the intrinsic graph structure, and the similarity metric function is in-
tended to learn such a “shift” which is supplementary to the intrinsic graph structure.
Secondly, incorporating the intrinsic graph structure can help accelerate the training
process and increase the training stability considering there is no prior knowledge
on the similarity metric, the trainable parameters are randomly initialized, and thus
it may take long to converge.

Different ways for combining intrinsic and implicit graph structures have been
proposed. For instance, Li et al (2018c); Chen et al (2020m) proposed to compute a
linear combination of the normalized graph Laplacian of the intrinsic graph structure
and the normalized adjacency matrix of the implicit graph structure, formulated as
follows:

eA = lL(0) + (1�l) f (A) (14.31)

where L(0) is the normalized graph Laplacian matrix, f (A) is the normalized adja-
cency matrix associated to the learned implicit graph structure, and l is a hyperpa-
rameter controlling the trade-off between the intrinsic and implicit graph structures.
Note that f : Rn⇥n ! Rn⇥n can be arbitrary normalization operations such as graph
Laplacian operation and row-normalization operation. Liu et al (2021) proposed a
hybrid message passing mechanism for GNNs which fuses the two aggregated node
vectors from the intrinsic graph and the learned implicit graph, respectively, and
then feed the fused vector to a GRU (Cho et al, 2014a) to update node embeddings.

Learning Paradigms

Most existing methods for graph structure learning for GNNs consist of two key
learning components: graph structure learning (i.e., similarity metric learning) and
graph representation learning (i.e., GNN module), and the ultimate goal is to learn
the optimized graph structures and representations with respect to certain down-
stream prediction task. How to optimize the two separate learning components to-
ward the same ultimate goal becomes an important question?

Joint Learning of Graph Structures and Representations

The most straightforward strategy is to jointly optimize the whole learning system
in an end-to-end manner toward the downstream prediction task which provides
certain form of supervision, as illustrated in fig. 14.2. Jiang et al (2019b); Yang et al
(2019c); Chen et al (2020m) designed a hybrid loss function combining both the task
prediction loss and the graph regularization loss, namely, L = Lpred +LG . The aim
of introducing the graph regularization loss is to bring some prior knowledge to the
graph properties (e.g., smoothness, sparsity) as we discussed above so as to enforce
learning more meaningful graph structures and alleviate the potential overfitting
issue.

14 Graph Neural Networks: Graph Structure Learning 315

Fig. 14.2: Joint learning paradigm.

Adaptive Learning of Graph Structures and Representations

Fig. 14.3: Adaptive learning paradigm.

It is common practice to sequentially stack multiple GNN layers so as to cap-
ture long-range dependencies in a graph. As a result, the graph representations up-
dated by one GNN layer will be consumed by the next GNN layer as the initial
graph representations. Since input graph representations to each GNN layer are
transformed by the previous GNN layer, one may naturally think whether the in-
put graph structure to each GNN layer should be adaptively adjusted to reflect the
changes of the graph representations, as illustrated in fig. 14.3. One such example
is the GAT (Veličković et al, 2018) model which adatptively reweights the impor-
tance of neighboring node embeddings by applying the self-attention mechanism to
the previously updated node embeddings when performing neighborhood aggrega-
tion at each GAT layer. However, the GAT model does not update the connectivity
information of the intrinsic graph. In the literature of graph structure learning for
GNNs, some methods (Yang et al, 2018c; Liu et al, 2019b; Huang et al, 2020a;
Saire and Ramı́rez Rivera, 2019) also operate by adaptively learning a graph struc-
ture for every GNN layer based on the updated graph representations produced by

316 Yu Chen and Lingfei Wu

the previous GNN layer. And the whole learning system is usually jointly optimized
in an end-to-end manner toward the downstream prediction task.

Iterative Learning of Graph Structures and Representations

Fig. 14.4: Iterative learning paradigm.

Both of aforementioned joint learning and adaptive learning paradigms aim to
learn a graph structure by applying a similarity metric function to the graph rep-
resentations in a one-shot effort. Even though the adaptive learning paradigm aims
to learn a graph structure at each GNN layer based on the updated graph represen-
tations, the graph structure learning procedure at each GNN layer is still one-shot.
One big limitation of such a one-shot graph structure learning paradigm is that the
quality of the learned graph structure heavily relies on the quality of the graph rep-
resentations. Most existing methods assume that raw node features capture a good
amount of information about the graph topology, which unfortunately is not always
the case. Thus, it can be challenging to learn good implicit graph structures from
the raw node features which do not contain adequate information about the graph
topology.

Chen et al (2020m) proposed a novel end-to-end graph learning framework,
dubbed as IDGL, for jointly and iteratively learning graph structures and represen-
tations. As illustrated in fig. 14.4, the IDGL framework operates by learning a better
graph structure based on better graph representations, and in the meantime, learning
better graph representations based on a better graph structure in an iterative manner.
More specifically, the IDGL framework iteratively searches for an implicit graph
structure that augments the intrinsic graph structure (if not available, a KNN graph
is used) which is optimized for the downstream prediction task. And this iterative

14 Graph Neural Networks: Graph Structure Learning 317

learning procedure dynamically stops when the learned graph structure approaches
close enough to the optimized graph (with respect to the downstream task) according
to certain stopping criterion (i.e., the difference between learned adjacency matrices
at consecutive iterations are smaller than certain threshold). At each iteration, a hy-
brid loss combining both the task prediction loss and the graph regularization loss
is added to the overall loss. After all iterations, the overall loss is back-propagated
through all previous iterations to update model parameters.

This iterative learning paradigm for repeatedly refining the graph structure and
graph representations has a few advantages. On the one hand, even when the raw
node features do not contain adequate information for learning implicit relation-
ships among nodes, the node embeddings learned by the graph representation learn-
ing component could ideally provide useful information for learning a better graph
structure because these node embeddings are optimized toward the downstream
task. On the other hand, the newly learned graph structure could be a better graph
input for the graph representation learning component to learn better node embed-
dings.

14.3.2 Connections to Other Problems

Graph structure learning for GNNs has interesting connections to a few important
problems. Thinking about these connections might spur further research in those
areas.

14.3.2.1 Graph Structure Learning as Graph Generation

The task of graph generation focuses on generating realistic and meaningful graphs.
The early works of graph generation formalized the problem as a stochastic gen-
eration process, and proposed various random graph models for generating a pre-
selected family of graphs such as ER graphs (Erdős and Rényi, 1959), small-world
networks (Watts and Strogatz, 1998), and scale-free graphs (Albert and Barabási,
2002). However, these approaches typically make certain simplified and carefully-
designed apriori assumptions on graph properties, and thus in general have limited
modeling capacity on complex graph structures. Recent attempts focus on building
deep generative models for graphs by leveraging RNN You et al (2018b), VAE (Jin
et al, 2018a), GAN (Wang et al, 2018a), flow-based techniques (Shi et al, 2019a) and
other specially designed models (You et al, 2018a). And GNNs are usually adopted
by these models as a powerful graph encoder.

Even though the graph generation task and the graph structure learning task
both focus on learning graphs from data, they have essentially different goals and
methodologies. Firstly, the graph generation task aims to generate new graphs where
both nodes and edges are added to together construct a meaningful graph. However
the graph structure learning task aims to learn a graph structure given a set of node

318 Yu Chen and Lingfei Wu

attributes. Secondly, generative models for graphs typically operate by learning the
distribution from the observed set of graphs, and generating more realistic graphs
by sampling from the learned graph distribution. But graph structure learning meth-
ods typically operate by learning the pair-wise relationships among the given set
of nodes, and based on that, building the graph topology. It will be an interesting
research direction to study how the two tasks can help each other.

14.3.2.2 Graph Structure Learning for Graph Adversarial Defenses

Recent studies (Dai et al, 2018a; Zügner et al, 2018) have shown that GNNs are
vulnerable to carefully-crafted perturbations (a.k.a adversarial attacks), e.g., small
deliberate perturbations in graph structures and node/edge attributes. Researchers
working on building robust GNNs found graph structure learning a powerful tool
against topology attacks. Given an initial graph whose topology might become un-
reliable because of adversarial attacks, they leveraged graph structure learning tech-
niques to recover the intrinsic graph topology from the poisoned graph.

For instance, assuming that adversarial attacks are likely to violate some intrinsic
graph properties (e.g., low-rank and sparsity), Jin et al (2020e) proposed to jointly
learn the GNN model and the “clean” graph structure from the perturbed graph
by optimizing some hybrid loss combining both the task prediction loss and the
graph regularization loss. In order to restore the structure of the perturbed graph,
Zhang and Zitnik (2020) designed a message-passing scheme that can detect fake
edges, block them and then attend to true, unperturbed edges. In order to address
the noise brought by the task-irrelevant information on real-life large graphs, Zheng
et al (2020b) introduced a supervised graph sparsification technique to remove po-
tentially task-irrelevant edges from input graphs. Chen et al (2020d) proposed a
Label-Aware GCN (LAGCN) framework which can refine the graph structure (i.e.,
filtering distracting neighbors and adding valuable neighbors for each node) before
the training of GCN.

There are many connections between graph adversarial defenses and graph struc-
ture learning. On the one hand, graph structure learning is partially motivated by im-
proving potentially error-prone (e.g., noisy or incomplete) input graphs for GNNs,
which share the similar spirit with graph adversarial defenses. On the other hand,
the task of graph adversarial defenses can benefit from graph structure learning tech-
niques as evidenced by some recent works.

However, there is a key difference between their problem settings. The graph
adversarial defenses task deals with the setting where the initial graph structure is
available, but potentially poisoned by adversarial attacks. And the graph structure
learning task aims to handle both the scenarios where the input graph structure is
available or unavailable. Even when the input graph structure is available, one can
still improve it by “denoising” the graph structure or augmenting the graph structure
with an implicit graph structure which captures implicit relationships among nodes.

14 Graph Neural Networks: Graph Structure Learning 319

14.3.2.3 Understanding Transformers from a Graph Learning Perspective

Transformer models (Vaswani et al, 2017) have been widely used as a powerful
alternative to Recurrent Neural Networks, especially in the Natural Language Pro-
cessing field. Recent studies (Choi et al, 2020) have shown the close connection be-
tween transformer models and GNNs. By nature, transformer models aim to learn
a self-attention matrix between every pair of objects, which can be thought as an
adjacency matrix associated with a fully-connected graph containing each object as
a node. Therefore, one can claim that transformer models also perform some sort
of joint graph structure and representation learning, even though these models typi-
cally do not consider any initial graph topology and do not control the quality of the
learned fully-connected graph. Recently, many variants of the so-called graph trans-
formers (Zhu et al, 2019b; Yao et al, 2020; Koncel-Kedziorski et al, 2019; Wang
et al, 2020k; Cai and Lam, 2020) have been developed to combine the benefits of
both GNNs and transformers.

14.4 Future Directions

In this section, we will introduce some advanced topics of graph structure learning
for GNNs and highlight some promising future directions.

14.4.1 Robust Graph Structure Learning

Although one of the major motivations of developing graph structure learning tech-
niques for GNNs is to handle noisy or incomplete input graphs, robustness does not
lie in the heart of most existing graph structure learning techniques. Most of exist-
ing works did not evaluate the robustness of their approaches to noisy initial graphs.
Recent works showed that random edge addition or deletion attacks significantly
downgraded the downstream task performance (Franceschi et al, 2019; Chen et al,
2020m). Moreover, most existing works admit that the initial graph structure (if
provided) might be noisy and thus unreliable for graph representation learning, but
they still assume that node features are reliable for graph structure learning, which
is often not true in real-world scenarios. Therefore, it is challenging yet rewarding to
explore robust graph structure learning techniques for data with noisy initial graph
structures and noisy node attributes.

320 Yu Chen and Lingfei Wu

14.4.2 Scalable Graph Structure Learning

Most existing graph structure learning techniques need to model the pair-wise re-
lationships among all the nodes in order to discover the hidden graph structure.
Therefore, their time complexity is at least O(n2) where n is the number of graph
nodes. This can be very expensive and even intractable for large-scale graphs (e.g.,
social networks) in real word. Recently, Chen et al (2020m) proposed a scalable
graph structure learning approach by leveraging the anchor-based approximation
technique to avoid explicitly computing the pair-wise node similarity, and achieved
linear complexity in both computational time and memory consumption with respect
to the number of graph nodes. In order to improve the scalability of transformer
models, different kinds of approximation techniques have also been developed in
recent works (Tsai et al, 2019; Katharopoulos et al, 2020; Choromanski et al, 2021;
Peng et al, 2021; Shen et al, 2021; Wang et al, 2020g). Considering the close connec-
tions between graph structure learning for GNNs and transformers, we believe there
are many opportunities in building scalable graph structure learning techniques for
GNNs.

14.4.3 Graph Structure Learning for Heterogeneous Graphs

Most existing graph structure learning works focus on learning homogeneous graph
structures from data. In comparison with homogeneous graphs, heterogeneous
graphs are able to carry on richer information on node types and edge types, and
occur frequently in real-world graph-related applications. Graph structure learning
for heterogeneous graphs is supposed to be more challenging because more types
of information (e.g., node types, edge types) are expected to be learned from data.
Some recent attempts (Yun et al, 2019; Zhao et al, 2021) have been made to learn
graph structures from heterogeneous graphs.

14.5 Summary

In this chapter, we explored and discussed graph structure learning from multiple
perspectives. We first reviewed the existing works on graph structure learning in the
literature of traditional machine learning, including both unsupervised graph struc-
ture learning and supervised graph structure learning. As for unsupervised graph
structure learning, we mainly looked into some representative techniques devel-
oped from the Graph Signal Processing community. We also introduced some recent
works on clustering analysis that leveraged graph structure learning techniques. As
for supervised graph structure learning, we introduced how this problem was studied
in the research on modeling interacting systems and Bayesian Networks. The main
focus of this chapter is on introducing recent advances in graph structure learning

14 Graph Neural Networks: Graph Structure Learning 321

for GNNs. We motivated graph structure learning in the GNN field by discussing the
scenarios where the graph-structured data is noisy or unavailable. We then moved
on to introduce recent research progress in joint graph structure and representa-
tion learning, including learning discrete graph structures and learning weighted
graph structures. The connections and differences between graph structure learning
and other important problems such as graph generation, graph adversarial defenses
and transformer models were also discussed. We then highlighted several remain-
ing challenges and future directions in the research of graph structure learning for
GNNs.

Editor’s Notes: Graph Structure Learning is a fast-emerging research topic
and have seen a significant number of interests in recent years. The key
idea is to learn an optimized graph structure in order to generate a bet-
ter node representation (Chapter 4) and a more robust node representation
(Chapter 8). Obviously, the graph structure learning could be expensive if
the common pair-wise learning approach is adopted and thus the scalability
issue could be a real major concern (Chapter 6). Meanwhile, it has tight
connection with graph generation (Chapter 11) and self-supervised learn-
ing (Chapter 18), since they all consider partially how to modify/leverage
graph structure. This chapter can be applicable to a broad range of appli-
cation domains such as recommendation system (Chapter 19), computer
vision (Chapter 20), Natural Language Processing (Chapter 21), Program
Analysis (Chapter 22), and so on.

