
Chapter 13
Graph Neural Networks: Graph Matching

Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

Abstract The problem of graph matching that tries to establish some kind of struc-
tural correspondence between a pair of graph-structured objects is one of the key
challenges in a variety of real-world applications. In general, the graph matching
problem can be classified into two categories: i) the classic graph matching problem
which finds an optimal node-to-node correspondence between nodes of a pair of in-
put graphs and ii) the graph similarity problem which computes a similarity metric
between two graphs. While recent years have witnessed the great success of GNNs
in learning node representations of graphs, there is an increasing interest in explor-
ing GNNs for the graph matching problem in an end-to-end manner. This chapter
focuses on the state of the art of graph matching models based on GNNs. We start
by introducing some backgrounds of the graph matching problem. Then, for each
category of graph matching problem, we provide a formal definition and discuss
state-of-the-art GNN-based models for both the classic graph matching problem
and the graph similarity problem, respectively. Finally, this chapter is concluded by
pointing out some possible future research directions.
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13.1 Introduction

As graphs are natural and ubiquitous representations for describing sophisticated
data structures, the problem of graph matching that tries to establish some kind
of structural correspondence between two input graph-structured objects. The graph
matching problem is one of the key challenges in a variety of research fields, such as
computer vision (Vento and Foggia, 2013), bioinformatics (Elmsallati et al, 2016),
cheminformatics (Koch et al, 2019; Bai et al, 2019b), computer security (Hu et al,
2009; Wang et al, 2019i), source/binary code analysis (Li et al, 2019h; Ling et al,
2021), and social network analysis (Kazemi et al, 2015), to name just as few. In
particular, recent research advances in graph matching have been closely involved
in many real-world applications in the field of computer vision, including visual
tracking (Cai et al, 2014; Wang and Ling, 2017), action recognition (Guo et al,
2018a), pose estimation (Cao et al, 2017, 2019), etc. In addition to the study in
computer vision, graph matching also serves as an important foundation of many
other graph-based research tasks, e.g., node and graph classification tasks (Richiardi
et al, 2013; Bai et al, 2019c; Ok, 2020), graph generation tasks (You et al, 2018b;
Ok, 2020), etc.

In a broad sense, according to different goals of graph matching in a wide vari-
ety of real-world applications, the general graph matching problem can be classified
into two categories (Yan et al, 2016) as follows. The first category is the classic
graph matching problem (Loiola et al, 2007; Yan et al, 2020a) that tries to estab-
lish the node-to-node correspondence (and/or even edge-to-edge correspondence)
between the pair of input graphs. The second category is the graph similarity prob-
lem (Bunke, 1997; Riesen, 2015; Ma et al, 2019a) with the purpose of computing
a similarity score between two input graphs. Both categories have the same inputs
(i.e., a pair of input graphs) but with different outputs, whereby the output of the first
category is mainly formulated as a correspondence matrix while the output of the
second category is usually expressed as a similarity scalar. From the perspective of
outputs, the second graph similarity problem can be viewed as a special case of the
first graph matching problem, as the similarity scalar reflects a more coarse-grained
correspondence representation of graph matching than the correspondence matrix.

Generally, both categories of the graph matching problem are known to be NP-
hard (Loiola et al, 2007; Yan et al, 2020a; Bunke, 1997; Riesen, 2015; Ma et al,
2019a), making both problems computationally infeasible for exact and optimum
solutions in large-scale and real-world settings. Given the great importance and in-
herent difficulty of the graph matching problem, it has been heavily investigated in
theory and practice and a huge number of approximate algorithms based on theo-
retical/empirical knowledge of experts have been proposed to find sub-optimal so-
lutions in an acceptable time. Interested readers are referred to (Loiola et al, 2007;
Yan et al, 2016; Foggia et al, 2014; Riesen, 2015) for a more extensive review, as
these approximation methods are beyond the scope of this chapter. Unfortunately,
despite various approximation methods have been devoted to resolving the graph
matching problem for the past decades, it still suffers from the issue of poor scala-



13 Graph Neural Networks: Graph Matching 279

bility as well as the issue of heavy reliance on expert knowledge, and thus remains
as a challenging and significant research problem for many practitioners.

More recently, GNNs that attempt to adapt deep learning from image to non-
euclidean data (i.e., graphs) have received unprecedented attention to learn infor-
mative representation (e.g., node or (sub)graph, etc.) of graph-structured data in
an end-to-end manner (Kipf and Welling, 2017b; Wu et al, 2021d; Rong et al,
2020c). Hereafter, a surge of GNN models have been presented for learning effective
node embeddings for downstream tasks, such as node classification tasks (Hamil-
ton et al, 2017a; Veličković et al, 2018; Chen et al, 2020m), graph classification
tasks (Ying et al, 2018c; Ma et al, 2019d; Gao and Ji, 2019), graph generation
tasks (Simonovsky and Komodakis, 2018; Samanta et al, 2019; You et al, 2018b) as
so on. The great success of GNN-based models on these application tasks demon-
strates that GNN is a powerful class of deep learning model to better learn the graph
representation for downstream tasks.

Encouraged by the great success of GNN-based models obtained from many
other graph-related tasks, many researchers have started to adopt GNNs for the
graph matching problem and a large number of GNN-based models have been pro-
posed to improve the matching accuracy and efficiency (Zanfir and Sminchisescu,
2018; Rolı́nek et al, 2020; Wang et al, 2019g; Jiang et al, 2019a; Fey et al, 2020; Yu
et al, 2020; Wang et al, 2020j; Bai et al, 2018, 2020b, 2019b; Xiu et al, 2020; Ling
et al, 2020; Zhang, 2020; Wang et al, 2020f; Li et al, 2019h; Wang et al, 2019i).
During the training stage, these models try to learn a mapping between the pair
of input graphs and the ground-truth correspondence in a supervised learning and
thus are more time-efficient during the inference stage than traditional approxima-
tion methods. In this chapter, we walk through the recent advances and develop-
ments of graph matching models based on GNNs. Particularly, we focus on how
to incorporate GNNs into the framework of graph matching/similarity learning and
try to provide a systematic introduction and review of state-of-the-art GNN-based
methods for both categories of the graph matching problem (i.e., the classic graph
matching problem in Section 13.2 and the graph similarity problem in Section 13.3,
respectively).

13.2 Graph Matching Learning

In this section, we start by introducing the first category of the graph matching
problem, i.e., the classic graph matching problem1, and provide a formal definition
of the graph matching problem. Subsequently, we will focus discussion on state-of-
the-art graph matching models based on deep learning as well as more advanced
GNNs in the literature.

1 For simplicity, we represent the classic graph matching problem as the graph matching problem
in the following sections of this chapter.
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13.2.1 Problem Definition

A graph of size n (i.e., numbers of nodes) can be represented as G = (V ,E ,A,X ,E),
in which V = {v1, · · · ,vn} denotes the set of nodes (also known as vertices), E ✓
V ⇥V denotes the set of edges, A 2 {0,1}n⇥n denotes the adjacency matrix, X 2
Rn⇥· denotes the initial feature matrix of nodes, and E 2Rn⇥n⇥· denotes an optional
initial feature matrix of edges.

The purpose of the graph matching problem is to find an optimal node-to-node
correspondence between two input graphs, i.e., G (1) and G (2). Without loss of gen-
erality, we consider the graph matching problem whose two input graphs of equal
size2. In particular, we provide a formal definition of the graph matching problem
in Definition 13.1 as follows and give an example illustration of the node-to-node
correspondence in Fig. 13.1.

Definition 13.1 (Graph Matching Problem). Given a pair of input graphs G (1) =
(V (1),E (1),A(1),X (1),E(1)) and G (2) = (V (2),E (2),A(2),X (2),E(2)) of equal size n,
the graph matching problem is to find a node-to-node correspondence matrix S 2
{0,1}n⇥n (i.e., also called assignment matrix and permutation matrix) between the
two graphs G (1) and G (2). Each element Si,a = 1 if and only if the node vi 2 V (1) in
G (1) corresponds to the node va 2 V (2) in G (2).

Intuitively, the resulting correspondence matrix S represents the possibility of es-
tablishing a matching relation between any pair of nodes in two graphs. The graph
matching problem is known to be NP-hard and has been investigated by formulating
it as a quadratic assignment problem (QAP) (Loiola et al, 2007; Yan et al, 2016). We
adopt the general form of Lawler’s QAP (Lawler, 1963) with constraints as follows
since it has been widely adopted in literature.

Fig. 13.1 An example illus-
tration of the graph match-
ing problem with two input
graphs, i.e., the left graph G (1)

and the right graph G (2) to be
matched. The red dotted lines
represent the node-to-node
correspondences between the
two graphs.

2 For simplicity, we assume that a pair of input graphs in the graph matching problem have the same
number of nodes, but we can extend the problem to a pair of graphs with different number of nodes
via adding dummy nodes, which is commonly adopted by graph matching literature Krishnapuram
et al (2004).
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s⇤ = argmax
s

s>Ks

s.t. S1n = 1n & S>1n = 1n

(13.1)

where s = vec(S) 2 {0,1}n2 is the column-wise vectorized version of the assignment
matrix S and 1n is a column vector of length n whose elements are equal to 1.
Particularly, K 2 Rn2⇥n2 is the corresponding second-order affinity matrix in which
each element Ki j,ab measures how well every pair of nodes (vi,v j) 2 V (1) ⇥ V (1)

matches (va,vb) 2 V (2) ⇥V (2) and can be defined as follows (Zhou and De la Torre,
2012).

Kind(i, j),ind(a,b) =

8
><

>:

cia if i = j and a = b,

di jab else if A(1)
i, j A(2)

a,b > 0,

0 otherwise.
(13.2)

where ind(·, ·) is a bijection function that maps a pair of nodes to an integer index,
the diagonal element (i.e., cia) encodes the node-to-node (i.e., first-order) affinity
between the node vi 2 V (1) and the node va 2 V (2), and the off-diagonal element
(i.e., di jab) encodes the edge-to-edge (i.e., second-order) affinity between the edge
(vi,v j) 2 E (1) and the edge (va,vb) 2 E (2).

Another important aspect for the formulation in Equation (13.1) is the constraint,
i.e., S1n = 1n and S>1n = 1n. It demands that the matching output of the graph
matching problem, i.e., the correspondence matrix S 2 {0,1}n⇥n, should be strictly
constrained as a doubly-stochastic matrix. Formally the correspondence matrix S
is a doubly-stochastic matrix if the summation of each column and each row of it is
1. That is, 8i, Â j Si, j = 1 and 8 j, Âi Si, j = 1. Therefore, the resulting correspondence
matrix of the graph matching problem should satisfy the requirement of the doubly-
stochastic matrix.

In general, the main challenge in optimizing and solving Equation (13.1) lies in
how to model the affinity model as well as how to optimize with the constraint for
solutions. Traditional methods mostly utilize pre-defined affinity models with lim-
ited capacity (e.g., Gaussian kernel with Euclid distance Cho et al (2010)) and resort
to different heuristic optimizations (e.g., graduated assignment (Gold and Rangara-
jan, 1996), spectral method (Leordeanu and Hebert, 2005), random walk (Cho et al,
2010), etc.). However, such traditional methods suffer from poor scalability and
inferior performance for large-scale settings as well as a broad of application sce-
narios (Yan et al, 2020a). Recently, studies on the graph matching are starting to
explore the high capacity of deep learning models, which achieve state-of-the-are
performance. In the following subsections, we will first give a brief introduction of
deep learning based graph matching models and then discuss state-of-the-art graph
matching models based on GNNs.
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13.2.2 Deep Learning based Models

Aiming at increasing the matching performance, extensive research interest in lever-
aging high capacity of deep learning models to solve the problem of graph matching
has been ignited since Zanfir and Sminchisescu (2018), which introduces an end-to-
end deep learning framework for the graph matching problem for the first time and
receives the best paper honorable mention award in CVPR 20183.

Deep Graph Matching. In (Zanfir and Sminchisescu, 2018), Zanfir and Sminchis-
escu first relax the graph matching problem of Equation (13.1) with the `2 constraint
as follows.

s⇤ = argmax
s

s>Ks

s.t. ksk2 = 1
(13.3)

To solve the problem, they attempt to introduce deep learning techniques to
the graph matching and propose an end-to-end training framework with standard
differentiable backpropagation and optimization algorithms. The proposed deep
graph matching framework first uses the existing pre-trained CNN model (i.e.,
VGG-16 (Simonyan and Zisserman, 2014b)) to extract node features (i.e., U (1) and
U (2) 2 Rn⇥d) and edge features (i.e., F(1) 2 Rp⇥2d and F(2) 2 Rq⇥2d) from the pair
of input images in the scenario of computer vision applications. In particular, F(1)

and F(2) are row-wise edge feature matrices with p and q as the number of edges in
each graph, respectively. As each edge attribute is the concatenation of the start and
the end node, the dimension of edge attribute is double 2d the dimension of node.

Next, based on extracted node/edge features, it builds the graph matching affinity
matrix K via a novel factorization method of graph matching (Zhou and De la Torre,
2012) as follows.

K = dvec(Kp)c+(G2 ⌦G1)dvec(Ke)c(H2 ⌦H1)
>

=
l

vec(U (1)U (2)>)
k
+(G2 ⌦G1)

l
vec(F(1)LF(2))

k
(H2 ⌦H1)

> (13.4)

where dXc denotes a diagonal matrix whose diagonal elements are all X ; ⌦ denotes
the Kronecker product; Gi and Hi (i = {1,2}) are the node-edge incidence matrices
that are recovered from the adjacency matrices A(i), i.e., A(i) = GiH>

i (i = {1,2});
Kp 2 Rn⇥n encodes the node-to-node similarity and is directly obtained from the
product of two node feature matrices, i.e., Kp = U (1)U (2)>; Ke 2 Rp⇥q encodes the
edge-to-edge similarity and is calculated by Ke = F(1)LF(2). It is worth to note
that L 2 R2d⇥2d is a learnable parameter matrix and thus the built graph matching
affinity matrix K in Equation (13.4) is a learnable affinity model.

Then, with the spectral matching technique (Leordeanu and Hebert, 2005), the
graph matching problem is translated into computing the leading eigenvector s⇤

which can be approximated by the power iteration algorithm as follows.

3 https://www.thecvf.com/?page_id=413

https://www.thecvf.com/?page_id=413
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sk+1 =
Ksk

kKskk2
(13.5)

in which s is initialized with s0 = 1 and K is computed from Equation (13.4). It
is also worth to note that the spectral graph matching solver in Equation (13.5) is
differentiable but un-learnable. Because the resulting sk+1 is not a doubly-stochastic
matrix, it employs a bi-stochastic normalization layer to iteratively normalize the
matrix by columns and rows over and over again.

Finally, the whole graph matching model is trained in an end-to-end fashion with
a displacement loss Ldisp which operates the difference between predicted displace-
ment and the ground-truth displacement.

Ldisp =
n

Â
i=0

q
kdi �dgt

i k2 + e and di = Â
va2V (2)

(Si,a P(2)
a )�P(1)

i (13.6)

where P(1) and P(2) are coordinates of nodes in both images; the vector of di mea-
sures the pixel offset; dgt

i is the corresponding ground-truth; and e is a small value
for robust penalty.

Deep Graph Matching via Black-box Combinatorial Solver. Motivated by ad-
vances in incorporating a combinatorial optimization solver into a neural net-
work (Pogancic et al, 2020), Rolı́nek et al (2020) propose an end-to-end neural
network which seamlessly embeds a black-box combinatorial solver, namely BB-
GM, for the graph matching problem. To be specific, given two cost vectors (i.e.,
cv 2 Rn2 and ce 2 R|E (1)||E (2)|) for both node-to-node and edge-to-edge correspon-
dences, the graph matching problem is formulated as follows.

GM(cv,ce) = arg min
(sv,se)2Adm(G (1),G (2))

{cv · sv + ce · se} (13.7)

where GM denotes the black-box combinatorial solver; sv 2 {0,1}n2 is the indicator
vector of matched nodes; se 2 {0,1}|E (1)||E (2)| is the indicator vector of matched
edges; Adm(G (1),G (2)) represents a set of all possible matching results between
G (1) and G (2).

By the formulation, the core of the graph matching problem is to construct the
two cost vectors cv and ce. Therefore, BB-GM first employs a pre-trained VGG-16
model to extract node embeddings and learns edge embeddings via SplineCNN (Fey
et al, 2018). Then, based on the learned node embeddings, cv is computed by a
weighted inner product similarity between the pair of node embeddings between
two graphs, along with a learnable neural network based on the graph-level feature
vector. Similarly, ce is also computed by a weighted inner product similarity be-
tween the pair of edge embeddings between two graphs, along with the same neural
network.
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13.2.3 Graph Neural Network based Models

More recently, GNNs have started to be studied to deal with the graph matching
problem. This is because GNNs bring about new opportunities on the tasks over
graph-like data and further improve the model capability taking structural informa-
tion of graphs into account. Besides, GNNs can be easily incorporated with other
deep learning architectures (e.g., CNN, RNN, MLP, etc.) and thus provide an end-
to-end learning framework for the graph matching problem.

Cross-graph Affinity based Graph Matching. Wang et al (2019g) claim that it is
the first work that employs GNNs for deep graph matching learning (as least in com-
puter vision). By exploiting the highly efficient learning capabilities of GNNs that
can update the node embeddings with the structural affinity information between
two graphs, the graph matching problem, i.e., the quadratic assignment problem, is
translated into a linear assignment problem that can be easily solved.

In particular, the authors present the cross-graph affinity based graph match-
ing model with the permutation loss, namely PCA-GM. PCA-GM consists of three
steps. First, to enhance learned node embeddings of individual graph with a stan-
dard message-passing network (i.e., intra-graph convolution network), PCA-GM
further updates node embeddings with an extra cross-graph convolution network,
i.e., CrossGConv which not only aggregates the information from local neighbors,
but also incorporates the information from the similar nodes in the other graph.
Fig. 13.2 illustrates an intuitive comparison between the intra-graph convolution
network and the cross-graph convolution network formulated as follows.

H(1)(k) = CrossGConv
�
Ŝ,H(1)(k�1),H(2)(k�1)

�

H(2)(k) = CrossGConv
�
Ŝ>,H(2)(k�1),H(1)(k�1)

� (13.8)

where H(1)(k) and H(2)(k) are the k-layer node embeddings for the graph G (1) and
G (2); k denotes the k-th iteration; Ŝ denotes the predicted assignment matrix which
is computed from shallower node embedding layers; and the initial embeddings,

Fig. 13.2 For one node in
the left graph G (1), the intra-
graph convolution network
only operates on its own
graph, i.e., the purple solid
lines in G (1). However, the
cross-graph convolution net-
work operates on both its own
graph (i.e., the purple solid
lines in G (1)) as well as the
other graph (i.e., blued dashed
lines from all nodes in G (2) to
the node in G (1)).

: node embeddings
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i.e., H(1)(0) and H(2)(0), are extracted via a pre-trained VGG-16 network in line
with Zanfir and Sminchisescu (2018).

Second, based on the resulting node embeddings eH(1) and eH(2) for both graphs,
PCA-GM computes the node-to-node assignment matrix S by a bi-linear mapping
followed by an exponential function as follows.

eS = exp
⇣ eH(1)Q eH(2)>

t

⌘
(13.9)

where Q denotes the learnable parameter matrix for the assignment matrix learn-
ing and t > 0 is a hyper-parameter. As the obtained eS 2 Rn⇥n does not satisfy the
constraint of the doubly-stochastic matrix, PCA-GM uses the Sinkhorn (Adams and
Zemel, 2011) operation for the relaxed linear assignment problem because it is fully
differentiable and has been proven effective for the final graph matching prediction.

S = Sinkhorn(eS) (13.10)

Finally, PCA-GM adopts the combinatorial permutation loss that computes the
cross entropy loss between the final predicted permutation S and ground truth per-
mutation Sgt for supervised graph matching learning.

Lperm = � Â
vi2V (1),va2V (2)

Sgt
i,a log(Si,a)+(1�Sgt

i,a) log(1�Si,a) (13.11)

Experiment results in (Wang et al, 2019g) demonstrated that graph matching mod-
els with the permutation loss outperform that with the displacement loss in Equa-
tion (13.6).

Graph Learning–Matching Network. Most prior studies on the graph matching
problem rely on established graphs with fixed structure information, i.e., the edge set
with or without attributes. Differently, Jiang et al (2019a) present a graph learning-
matching network, namely GLMNet, which incorporates the graph structure learn-
ing (i.e., learning the graph structure information) into the general graph matching
learning to build a unified end-to-end model architecture. To be specific, based on
the pair of node feature matrices X (l) = {x(l)

1 , · · · ,x(l)
n } (l = {1,2}), GLMNet at-

tempts to learn a pair of optimal graph adjacency matrices A(l) (l = {1,2}) for bet-
ter serving for the latter graph matching learning and each element is computed as
follows.

A(l)
i, j = f(x(l)

i ,x(l)
j ;q) =

exp(s(q>[x(l)
i ,x(l)

j ]))

Ân
j=1 exp(s(q>[x(l)

i ,x(l)
j ]))

, l = {1,2} (13.12)

where s is the activation function, e.g., ReLU; [·, ·] denotes the concatenation oper-
ation; and q denotes the trainable parameter for the graph structure learning which
is shared for both input graphs.
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Following PCA-GM (Wang et al, 2019g), GLMNet also explores a series of
graph convolution modules to learn informative node embeddings of both input
graphs for the latter affinity matrix learning and matching prediction. Based on the
obtained A(l) and X (l) (l = {1,2}), GLMNet employs the graph smoothing convolu-
tion layer (Kipf and Welling, 2017b), the cross-graph convolution layer Wang et al
(2019g) and the graph sharpening convolution layer (i.e., defined as the counterpart
of Laplacian smoothing in (Kipf and Welling, 2017b)) to further learn and update
their node embeddings i.e., eX (l) (l = {1,2}). After that, GLMNet directly computes
the node-to-node assignment matrix S by Equations (13.9) and (13.10), which is
exactly the same as PCA-GM (Wang et al, 2019g) does.

In addition to the permutation cross entropy loss Lperm defined in Equation (13.11),
GLMNet adds an extra constraint regularized loss Lcon for better satisfying the per-
mutation constraint, i.e., L = Lperm +lLcon with l > 0, in which Lcon is defined
as follows.

Lcon = Â
vi,v j2V (1)

Â
va,vb2V (2)

Ui j,abSi,aS j,b

Ui j,ab =

(
1 if i = j,a 6= b or i 6= j,a = b;
0 otherwise.

(13.13)

where U 2 Rn2⇥n2 represents the conflict relationships of all matches and the opti-
mum correspondence S means Â

vi,v j2V (1)
Â

va,vb2V (2)
Ui j,abSi,aS j,b = 0.

Deep Graph Matching with Consensus. In (Fey et al, 2020), Fey et al also
employ GNNs to learn the graph correspondence as previous work, but addition-
ally introduce a neighborhood consensus Rocco et al (2018) to further refine the
learned correspondence matrix. Firstly, they use common GNN models along with
the Sinkhorm operation to compute an initial correspondence matrix S0 as follows.
Yq1 denotes the shared GNN model for both graphs.

H(l) = Yq1(X
(l),A(l),E(l)), l = {1,2}

S0 = Sinkhorn(H(1)H(2)>)
(13.14)

Then, to reach a neighborhood consensus between the pair of matched nodes,
they refine the initial correspondence matrix S0 via another trainable GNN model
(i.e., Yq2 ) and an MLP model (i.e., fq3 ).

O(1) = Yq2(In,A(1),E(1))

O(2) = Yq2(S
k>In,A(2),E(2))

Sk+1
i,a = Sinkhorn

�
Sk

i,a +fq3(o
(1)
i �o(2)

a )
�

(13.15)

where In is the identify matrix and o(1)
i � o(2)

a is computed as the neighborhood
consensus between the node pair (vi,va) 2 V (1) ⇥V (2) between two graphs (e.g.,
o(1)

i �o(2)
a 6= 0 means a false matching over the neighborhoods of vi and v j). Finally,
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SK is obtained after K iterations and the final loss function incorporates both feature
matching loss and neighborhood consensus loss, i.e., L = L init +L re f ine.

L init = � Â
vi2V (1)

log
⇣

S0
i,pgt (i)

⌘

L re f ine = � Â
vi2V (1)

log
⇣

SK
i,pgt (i)

⌘ (13.16)

where pgt(i) denotes the ground truth correspondence.

Deep Graph Matching with Hungarian Attention. Yu et al (2020) present an
end-to-end deep learning model which is almost identical to Wang et al (2019g),
including a graph embedding layer based on GNNs, an affinity learning layer (i.e.,
Equations (13.9) and (13.10)), and the permutation loss (i.e., Equation (13.11)).
However, they improve the model with two main contributing aspects. The first as-
pect is adopting a novel node/edge embedding operation (i.e., CIE) to replace the
commonly used GCN operation that simply updates node embeddings while ig-
nores the rich edge attributes. Since the edge information provides a crucial role
in determining the graph matching result, CIE updates both node and edge embed-
ding simultaneously by a channel-wise updating function in a multi-head fashion.
Interested readers are referred to Section 3.2 in (Yu et al, 2020). Another aspect is a
novel loss function. As the previously used permutation loss is prone to overfitting,
the authors devise a novel loss function that introduces a Hungarian attention Z into
the permutation loss as follows.

Z = Attention(Hungarian(S),Sgt)

Lhung = � Â
vi2V (1),va2V (2)

Zi,a

⇣
Sgt

i,a log(Si,a)+(1�Sgt
i,a) log(1�Si,a)

⌘
(13.17)

where Hungarian denotes a black-box Hungarian algorithm and the role of Z is like
a mask that attempts to focus more on those mismatched node pairs and focus less
on node pairs that are matched exactly.

Graph Matching with Assignment Graph. Differently, Wang et al (2020j) refor-
mulate the graph matching problem as the problem of selecting reliable nodes in
the constructed assignment graph (Cho et al, 2010) in which each node represents a
potential node-to-node correspondence. The formal definition of assignment graph
is given in Definition 13.2 and one example is illustrated in Fig. 13.3.

Definition 13.2 (Assignment Graph). Given two graphs G (1) = (V (1),E (1),X (1),E(1))
and G (2) = (V (2),E (2),X (2),E(2)), an assignment graph G (A) = (V (A),E (A),X (A),E(A))

is constructed as follows. G (A) takes each candidate correspondence (v(1)
i ,v(2)

a ) 2
V (1) ⇥V (2) between two graphs as a node via 2 V (A) and link an edge between a
pair of nodes v(A)

ia ,v(A)
jb 2 V (A) (i.e., (v(A)

ia ,v(A)
jb ) 2 E (A)) if and only if both edges i.e.,

(v(1)
i ,v(1)

j ) 2 E (1) and (v(2)
a ,v(2)

b ) 2 E (2), exist in its original graph. Optionally, for
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Fig. 13.3: Example illustration of building an assignment graph G (A) from the pair
of graphs G (1) and G (2).

node attributes X (A) and edge attributes E(A), each of them could be obtained by
concatenating attributes of the pair of nodes or edges in the original graph, respec-
tively.

With the constructed assignment graph G (A), the reformulated problem of select-
ing reliable nodes in G (A) is quite similar to binary node classification tasks Kipf and
Welling (2017b) that classify nodes into positive or negative (i.e., meaning matched
or un-matched). To solve the problem, the authors propose a fully learnable model
based on GNNs which takes the G (A) as input, iteratively learns node embeddings
over graph structural information and predicts a label for each node in G (A) as out-
put. Besides, the model is trained with a similar loss function to (Jiang et al, 2019a).

13.3 Graph Similarity Learning

In this section, we will first introduce the second category of the general graph
matching problem – the graph similarity problem. Then, we will provide an ex-
tensive discussion and analysis of state-of-the-art graph similarity learning models
based on GNNs.

13.3.1 Problem Definition

Learning a similarity metric between an arbitrary pair of graph-structured objects
is one of the fundamental problems in a variety of applications, ranging from sim-
ilar graph searching in databases (Yan and Han, 2002), to binary function analy-
sis (Li et al, 2019h), unknown malware detection (Wang et al, 2019i), semantic code
retrieval (Ling et al, 2021), etc. According to different application backgrounds,
the similarity metric can be defined by different measures of structural similarity,
such as graph edit distance (GED) (Riesen, 2015), maximum common subgraph
(MCS) (Bunke, 1997; Bai et al, 2020c), or even more coarse binary similarity (i.e.,
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similar or not) (Ling et al, 2021). As GED is equivalent to the problem of MCS
under a fitness function (Bunke, 1997), in this section, we mainly consider the GED
computation and focus more on state-of-the-art graph similarity learning models
based on GNNs.

Basically, the graph similarity problem intends to compute a similarity score be-
tween a pair of graphs, which indicates how similar the pair of graphs is. In the
following Definition 13.3, the general graph similarity problem is defined.

Definition 13.3 (Graph Similarity Problem). Given two input graphs G (1) and
G (2), the purpose of graph similarity problem is to produce a similarity score s
between G (1) and G (2). In line with the notations in Section 13.2.1, the G (1) =
(V (1),E (1),A(1),X (1)) is represented as set of n nodes vi 2 V (1) with a feature ma-
trix X (1) 2 Rn⇥d , edges (vi,v j) 2 E (1) formulating an adjacency matrix A(1). Simi-
larly, G (2) = (V (2),E (2),A(2),X (2) is represented as set of m nodes va 2 V (2) with a
feature matrix X (2) 2 Rm⇥d , edges (va,vb) 2 E (2) formulating an adjacency matrix
A(2).

For the similarity score s, if s 2 R, the graph similarity problem can be considered
as the graph-graph regression tasks. On the other hand, if s 2 {�1,1}, the problem
can be considered as the graph-graph classification tasks.

Particularly, the computation of GED (Riesen, 2015; Bai et al, 2019b) (some-
times normalized in [0,1]) is a typical case of graph-graph regression tasks. To be
specific, GED is formulated as the cost of the shortest sequence of edit operations
over nodes or edges which have to undertake to transform one graph into another
graph, in which an edit operation can be an insertion or a deletion of a node or an
edge. In Fig. 13.4, We give an illustration of GED computation.

Similar to the classic graph matching problem, the computation of GED is also
a well-studied NP-hard problem. Although there is a rich body of work (Hart et al,
1968; Zeng et al, 2009; Riesen et al, 2007) that attempts to find sub-optimal so-
lutions in polynomial time via a variety of heuristics (Riesen et al, 2007; Riesen,
2015), these heuristic methods still suffer from the poor scalability (e.g., large search
space or excessive memory) and heavy reliance on expert knowledge (e.g., various
heuristics based on different application cases). Currently, learning-based models
which incorporate GNNs into an end-to-end learning framework for graph similar-
ity learning are gradually becoming more and more available, demonstrating the

Fig. 13.4 Illustration of com-
puting the GED score between
G (1) and G (2). Since G (1) can
be transform into in G (2) by
deleting the edge (v2,v3) or
G (2) can be transformed into
in G (1) by inserting the edge
(vb,vc), the GED between
two graphs is 1.

inserting one edge

1

2 3

4

a

b c

d

deleting  one edge
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superiority by traditional heuristic methods in both effectiveness and efficiency. In
two following subsections, we will discuss state-of-the-art GNN-based graph simi-
larity models for graph-graph regression tasks and graph-graph classification tasks,
respectively.

13.3.2 Graph-Graph Regression Tasks

As mentioned above, the graph-graph regression task refers to computing a similar-
ity score between a pair of graphs and we focus on the graph similarity learning on
GED in this subsection.

Graph Similarity Learning with Convolutional Set Matching. Aiming at accel-
erating the graph similarity computation while preserving a good performance, Bai
et al (2018) first turn the computation of GED into a learning problem rather than
approximation methods with combinatorial search, and then propose an end-to-end
framework, namely GSimCNN, for the graph similarity learning. For GSimCNN
in (Bai et al, 2018) (or GraphSim in (Bai et al, 2020b)4), it is probably the first work
that applies both GNNs and CNNs for the task of GED computation and consists of
three steps in general. First, GSimCNN employs multiple layers of standard GCNs
to generate the node embedding vector for each node in the pair of graphs. Second,
in each layer of GCNs, GSimCNN uses the BFS node-ordering scheme (You et al,
2018b) to re-order the node embeddings and compute the inner product between the
re-ordered node embeddings in two graphs to generate a node-to-node similarity
matrix. Finally, after padding or resizing resulting node-to-node similarity matrices
into square matrices, the authors transform the task of graph similarity computation
into an image processing problem and explore standard CNNs and MLPs for the fi-
nal graph similarity prediction. GSimCNN is trained with a mean squared error loss
function based on predicted similarity scores and the corresponding ground-truth
scores.

Graph Similarity Learning with Graph-Level Interaction. Soon after, Bai et al
present another GNN-based model, called SimGNN, for graph similarity learning.
In SimGNN, it takes not only node-level interactions but also graph-level interac-
tions as considerations for jointly learning the graph similarity score. For the node-
level similarity between two graphs, it first adopts a similar approach like GSim-
CNN to generate the node-to-node similarity matrix, and then extract a histogram
feature vector from the matrix as the node-level comparison information. For the
graph-level similarity between two graphs, SimGNN first employs a simple graph
pooling model via an attention mechanism to generate one graph-level embedding
vector for each graph (hG (1) and hG (2) ) and then adopts a trainable neural tensor net-
work (NTN) (Socher et al, 2013) to model the relationship between the two graph-

4 It seems that the model architecture of GSimCNN in (Bai et al, 2018) is the same as that of
GraphSim in (Bai et al, 2020b), which evaluates the model with additional datasets and similarity
metrics (i.e., both GED and MCS).
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level embedding vectors as follows.

NTN(hG (1) ,hG (2) ) = s
⇣

h>
G (1)W [1:K]hG (2) +V

⇥hG (1)

hG (2)

⇤
+b

⌘
(13.18)

where s is the activation function and [
·
· ] denotes the concatenation operation.

In addition, W [1:K], V and b are parameters in NTN to be learned and K is a
hyper-parameter which determines the length of the graph-level similarity vector
calculated by NTN. Finally, to compute the similarity score between two graphs,
SimGNN concatenates two similarity vectors from the node level and the graph
level along with a small MLP network for prediction.

Graph Similarity Learning based on Hierarchical Clustering. In (Xiu et al,
2020), Xiu et al argue that if two graphs are similar, their corresponding compact
graphs should be similar with each other and conversely if two graphs are dissim-
ilar, their corresponding compact graphs should also be dissimilar. They believe
that, for the input pair of graphs, different views in regard to different pairs of com-
pact graphs can provide different scales of similarity information between two input
graphs and thus benefit the graph similarity computation. To this end, a hierarchical
graph matching network (HGMN) (Xiu et al, 2020) is presented to learn the graph
similarity from a multi-scale view. Concretely, HGMN first employs multiple stages
of hierarchical graph clustering to successively generate more compact graphs with
initial node embeddings to provide a multi-scale view of differences between two
graphs for subsequent model learning. Then, with the pairs of compact graphs in
different stages, HGMN computes the final graph similarity score by adopting a
GraphSim-like model (Bai et al, 2020b), including node embeddings update via
GCNs, similarity matrices generation and prediction via CNNs. However, in order
to ensure permutation invariance of generated similarity matrices, HGMN devises a
different node-ordering scheme based on earth mover distance(EMD) (Rubner et al,
1998) rather than BFS node-order method in (Bai et al, 2020b). According to the
EMD distance, HGMN first aligns nodes for both input graphs in each stage and
then produces the corresponding similarity matrix in the aligned order.

Graph Similarity Learning with Node-Graph Interaction. To learn richer in-
teraction features between a pair of input graphs for computing the graph similar-
ity in an end-to-end fashion, Ling et al propose a multi-level graph matching net-
work (MGMN) (Ling et al, 2020) which consists of a siamese graph neural network
(SGNN) and a novel node-graph matching network (NGMN). To learn graph-level
interactions between two graphs, SGNN first utilizes a multi-layer of GCNs with the
siamese network to generate node embeddings H(l) = {h(l)

i }{n,m}
i=1 2 R{n,m}⇥d for all

nodes in graph G(l), l = {1,2} and then aggregates a corresponding graph-level em-
bedding vector for each graph. On the other hand, to learn cross-level interaction
features between two graphs, NGMN further employs a node-graph matching layer
to update node embeddings with learned cross-level interactions between node em-
beddings of a graph and a corresponding graph-level embedding of the other whole
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graph. Taking a node vi 2 V (1) in G (1) as an example, NGMN first computes an at-
tentive graph-level embedding vector hi,att

G(2) for G (2) by weighted averaging all node
embeddings in G (2) based on the corresponding cross-graph attention coefficient
towards vi as follows.

hi,att
G(2) = Â

v j2V (2)

ai, jh(2)
j , where ai, j = cosine(h(1)

i ,h(2)
j ) 8v j 2 V (2)

(13.19)

where att in the superscript of hi,att
G(2) means it is an attentive graph-level embedding

vector of G(2) in terms of the node vi in G (1).
Then, to update the node embedding of vi with cross-graph interactions, NGMN

learns similarity feature vector between the node embedding (i.e., h(1)
i ) and the at-

tentive graph-level embedding vector (i.e., hi,att
G(2) ) via a multi-perspective matching

function. After performing the above node-graph matching layer over all nodes for
both graphs, NGMN aggregates a corresponding graph-level embedding vector for
each graph. The full model MGMN concatenates the two aggregated graph-level
embeddings from both SGNN and NGMN for each graph and feed those concate-
nated embeddings into a final small prediction network for the graph similarity com-
putation.

Graph Similarity Learning based on GRAPH-BERT. As previous studies on the
graph similarity learning are mostly trained in a supervised manner and cannot guar-
antee the basic properties (e.g., triangle inequality) of the graph similarity metric
like GED, Zhang introduces a novel training framework of GB-DISTANCE (Zhang,
2020) based on GRAPH-BERT (Zhang et al, 2020a). First, GB-DISTANCE adapts
the pre-trained GRAPH-BERT model to update node embeddings and further ag-
gregate a graph-level representation embedding of vector hG (i) for the graph G (i).
Then, GB-DISTANCE computes the graph similarity di, j between the pair of graphs
(G (i),G ( j)) with several fully connected layers as follows.

d(G (i),G ( j)) = 1� exp
⇣

�FC
�
(hG (i) �hG ( j) )⇤⇤2

�⌘
(13.20)

where FC denotes the employed fully connected layers and (·) ⇤ ⇤2 denotes the
element-wise square of the input vector. In (Zhang, 2020), GB-DISTANCE con-
siders a scenario that inputs a set of m graphs (i.e., {G (i)}m

i=1) and outputs the
similarity between any pair of graphs, i.e., a similarity matrix D = {Di, j}i, j=m

i, j=1 =
�

d(G (i),G ( j))
 i, j=m

i, j=1 2 Rm⇥m, and formulates the graph similarity problem in a su-
pervised or semi-supervised settings as follows.

minkM � (D� D̂)kp with Mi, j =

8
><

>:

1 if Di, j is labeled
a if Di, j is unlabeled ^ i 6= j
b if i = j

s.t.Di, j  Di,k +Dk, j, 8i, j,k 2 {1, · · · ,m}

(13.21)
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where k ·kp denotes the Lp norm; D̂ denotes the ground-truth similarity matrix; M is
a mask matrix for the semi-supervised learning with two hyper-parameters a and b ;
the constraint of Di, j  Di,k + Dk, j, 8i, j,k 2 {1, · · · ,m} tries to ensure the triangle
inequality of graph similarity metrics. To optimize the model with such constraints,
GB-DISTANCE devises a two-phase training algorithm with the constrained metric
refining methods.

Graph Similarity Computation based on A*. It is obviously observed that all
these aforementioned approaches directly compute the GED similarity score be-
tween two graphs, however, failing to produce the edit path, which can explic-
itly express the sequence of edit operations for transforming one graph into the
other graph. To output the edit path like the traditional A* (Hart et al, 1968;
Riesen et al, 2007) algorithm, Wang et al propose a graph similarity learning model
GENN-A* (Wang et al, 2020f) which incorporates the existing solution of A* with
a learnable GENN model based on GNNs. A* (Hart et al, 1968; Riesen et al, 2007)
is a tree-searching algorithm which explores the space of all possible node/edge
mappings between two graphs as an ordered search tree and further expands succes-
sors of a node p in the search tree by the minimum induced edit cost g(p)+ h(p),
in which g(p) is the cost of current partial edit path induced so far and h(p) is
the estimated cost of edit path between the remaining un-matched sub-graphs. Be-
cause of the poor scalability of A*, GENN-A* thus replaces the heuristics with a
learning-based model (i.e., GENN) to predict h(p). GENN is almost the same as
SimGNN (Bai et al, 2019b) with the removal of the histogram module and is used
to predict a normalized GED score s(p) 2 (0,1) between the remaining un-matched
sub-graphs. After that, the h(p) is obtained as follows where n̂ and m̂ denote the
numbers of nodes of the un-matched sub-graphs.

h(p) = �0.5(n̂+ m̂) log(s(p)) (13.22)

13.3.3 Graph-Graph Classification Tasks

In addition to the computation of GED, learning a binary label s 2 {�1,1} (i.e.,
similar or not) between a pair of graphs can be view as a task of the graph-graph
classification learning5 and has been widely studied in many real-world applica-
tions, including binary code analysis, source code analysis, malware detection, etc.

Graph Similarity Learning via Cross-graph Matching. In the scenario of de-
tecting whether two binary functions are similar or not, Li et al present a message-
passing based graph matching network (GMN) (Li et al, 2019h) to learn a similarity
label between the two control-flow graphs (CFGs) which represent two input bi-
nary functions. In particular, GMN employs a similar cross-graph matching network

5 The termed graph-graph classification learning is totally different from the general graph classifi-
cation task (Ying et al, 2018c; Ma et al, 2019d) that only predicts a label for one input graph rather
than a pair of input graphs.



294 Xiang Ling, Lingfei Wu, Chunming Wu and Shouling Ji

based on standard message-passing GNNs to iteratively generate more discrimina-
tive node embeddings (e.g., H(l) = {h(l)

i }vi2V (l) , l = {1,2}) for two input graphs.
Intuitively, it updates the node embeddings of one input graphs by incorporating the
attentive association information of another through a soft attention, which is similar
to the cross-graph convolution network introduced in Equation (13.8) and Fig. 13.2.
Subsequently, in order to calculate the similarity score, GMN adopts an aggrega-
tion operation (Li et al, 2016b) as follows to output a graph-level embedding vector
(i.e., hG(l) , l = {1,2}) for each graph and applies an existing similarity function
for the final similarity prediction, i.e., s(hG(1) ,hG(2) ) = fs(hG(1) ,hG(2) ), where fs can
be an arbitrary existing similarity function such as Euclidean, cosine or Hamming
similarity function.

hG(l) = MLPq1

⇣
Â

vi2V (l)

s
�

MLPq2(h
(l)
i )

�
�MLPq3(h

(l)
i )

⌘
, l = {1,2} (13.23)

where s denotes the activation function; � denotes the element-wise multiplication
operation; MLPq1, MLPq2, MLPq3 are MLP networks to be trained. Based on dif-
ferent supervisions of training samples (e.g., the ground-truth binary label between
two graphs or relative similarity among three graphs), GMN adopts two margin-
based loss functions, i.e., the pair loss function and the triplet loss function. As for
different similarity functions fs employed, the formulation of the corresponding loss
function is quite different. Thus, we refer interested readers for the loss functions
to (Li et al, 2019h).

Graph Similarity Learning on Heterogeneous Graphs. Motivated by ever-growing
malware threats, a heterogeneous graph matching network (MatchGNet) frame-
work (Wang et al, 2019i) is proposed for unknown malware detection. To better
represent programs (e.g., benign or malicious) in enterprise systems and capture in-
teraction relationships between system entities (e.g., files, processes, sockets, etc.), a
heterogeneous invariant graph is constructed for each program. Therefore, the mal-
ware detection problem is equivalent to detecting whether two representation graphs
(i.e., the graph of the input program and the graph of the existing benign program)
are similar or not. Due to the heterogeneity of the invariant graph, MatchGNet em-
ploys a hierarchical attention graph neural encoder (HAGNE)-based GNN to learn
a graph-level embedding vector for each program. Particularly, HAGNE first identi-
fies path-relevant sets of neighbors via meta-paths (Sun et al, 2011) and then updates
node embeddings by aggregating the entities under each path-relevant neighbor set.
The graph-level embedding over all the meta-paths is computed by a weighted sum-
marization of all embeddings of meta-paths. Finally, MatchGNet directly calculates
the cosine similarity between the two graph-level embedding vector as the final pre-
dicted label for malware detection.
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13.4 Summary

In this chapter, we have introduced the general graph matching learning, whereby
objective functions are formulated for establishing an optimal node-to-node corre-
spondence matrix between two graphs for the classic graph matching problem and
computing a similarity metric between two graphs for the graph similarity problem,
respectively. In particular, we have thoroughly analyzed and discussed state-of-the-
art GNN-based graph matching models and graph similarity models. In the future,
for better graph matching learning, some directions we believe are requiring more
efforts:

• Fined-grained cross-graph features. For the graph matching problem which
inputs the pair of graphs, interaction features between two graphs are funda-
mental and key features in both the graph matching learning and the graph sim-
ilarity learning. Although several existing methods (Li et al, 2019h; Ling et al,
2020) have been devoted to learning interacted features between two graphs for
better representation learning, these models have caused non-negligible extra
computational overhead. Better fined-grained cross-graph feature learning with
efficient algorithms could make a new state of the art.

• Semi-supervised learning and un-supervised learning. Because of the com-
plexity of graphs in the real-world application scenarios, it is common to train
the model in a semi-supervised setting or even in an un-supervised setting. Mak-
ing full use of relationships between existing graphs and, if possible, the other
data that is not directly relevant to the graph matching problem could further
promote the development of graph matching/similarity learning in more practi-
cal applications.

• Vulnerability and robustness. Although adversarial attacks have been exten-
sively studied for image classification tasks (Goodfellow et al, 2015; Ling et al,
2019) and node/graph classification tasks (Zügner et al, 2018; Dai et al, 2018a),
there is currently only one preliminary work (Zhang et al, 2020f) that studies
adversarial attacks on the graph matching problem. Therefore, studying the vul-
nerability of the state-of-the-art graph matching/similarity models and further
building more robust models is a highly challenging problem.

Editor’s Notes: Graph Matching Networks is an emerging research topic recently
and have drawn significant number of interests in both research community and in-
dustrial community due to its broad range of application domains such as computer
vision (Chapter 20), Natural Language Processing (Chapter 21), Program Analysis
(Chapter 22), Anomaly Detection (Chapter 26). Graph Matching Networks is built
on graph node representation learning (Chapter 4) but focuses more on the interac-
tion of two graphs from low-level nodes to high-level graphs. It has tight connection
with link prediction (Chapter 10) and self-supervised learning (Chapter 18), where
graph matching could be formulated as one of the sub-tasks for these graph learn-
ing tasks. Obviously, adversarial robustness (Chapter 8) could have direct impact of
graph matching networks, which has recently been extensively studied as well.


