
Chapter 12
Graph Neural Networks: Graph Transformation

Xiaojie Guo, Shiyu Wang, Liang Zhao

Abstract Many problems regarding structured predictions are encountered in the
process of “transforming” a graph in the source domain into another graph in target
domain, which requires to learn a transformation mapping from the source to target
domains. For example, it is important to study how structural connectivity influences
functional connectivity in brain networks and traffic networks. It is also common to
study how a protein (e.g., a network of atoms) folds, from its primary structure
to tertiary structure. In this chapter, we focus on the transformation problem that
involves graphs in the domain of deep graph neural networks. First, the problem
of graph transformation in the domain of graph neural networks are formalized in
Section 12.1. Considering the entities that are being transformed during the trans-
formation process, the graph transformation problem is further divided into four
categories, namely node-level transformation, edge-level transformation, node-edge
co-transformation, as well as other graph-involved transformations (e.g., sequence-
to-graph transformation and context-to-graph transformation), which are discussed
in Section 12.2 to Section 12.5, respectively. In each subsection, the definition of
each category and their unique challenges are provided. Then, several representa-
tive graph transformation models that address the challenges from different aspects
for each category are introduced.
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12.1 Problem Formulation of Graph Transformation

Many problems regarding structured predictions are encountered in the process of
“translating” an input data (e.g., images, texts) into a corresponding output data,
which is to learn a translation mapping from the input domain to the target do-
main. For example, many problems in computer vision can be seen as a “transla-
tion” from an input image into a corresponding output image. Similar applications
can also be found in language translation, where sentences (sequences of words)
in one language are translated into corresponding sentences in another language.
Such a generic translation problem, which is important yet has been extremely dif-
ficult in nature, has attracted rapidly increasing attention in recent years. The con-
ventional data transformation problem typically considers the data under special
topology. For example, an image is a type of grid where each pixel is a node and
each node has connections to its spatial neighbors. Texts are typically considered
as sequences where each node is a word and an edge exists between two contextual
words. Both grids and sequences are special types of graphs. In many practical ap-
plications, it is required to work on data with more flexible structures than grids and
sequences, and hence more powerful translation techniques are required in order
to handle more generic graph-structured data. Thus, there emerges a new problem
named deep graph transformation, the goal of which is to learn the mapping from
the graph in the input domain to the graph in the target domain. The mathematical
problem formulation of the graph is provided in detail as below.

A graph is defined as G (V ,E ,F,E), where V is the set of N nodes, and E ✓ V ⇥
V is the set of M edges. ei, j 2 E is an edge connecting nodes vi, v j 2 V . A graph can
be described in matrix or tensor using its (weighted) adjacency matrix A. If the graph
has node attributes and edge attributes, there are node attribute matrix F 2 RN⇥L

where D is the number of node attributes, and edge attribute tensor E 2 RN⇥N⇥K

where K is the number of edge attributes. L is the dimension of node attributes, and
K is the dimension of edge attributes. Based on the definition of graph, we define
the input graphs from the source domain as GS and the output graphs from the target
domain as GS ! GT (Guo et al, 2019c).

Considering the entities that are being transformed during the transformation
process, the graph transformation problem is further divided into three categories,
namely (1) node-level transformation, where only nodes and nodes attributes can
change during translation process; (2) edge-level transformation, where only topol-
ogy or edge attributes can change during translation process; (3) node-edge co-
transformation where both nodes and edges can change during translation process.
There are also some other transformations involving graphs, including sequence-to-
graph transformation, graph-to-sequence transformation and context-to-graph trans-
formation. Although they can be absorbed into the above three types if regarding
sequences as a special case of graphs, we want to separate them out because they
may usually attract different research communities.
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12.2 Node-level Transformation

12.2.1 Definition of Node-level Transformation

Node-level transformation aims to generate or predict the node attributes or node
category of the target graph conditioning on the input graph. It can also be regarded
as a node prediction problem with stochasticity. It requires the node set V or node
attributes F to change while the graph edge set and edge attributes are fixed during
the transformation namely GS(VS,E ,FS,E) ! GT (VT ,E ,FT ,E). Node transforma-
tion has a wide range of real-world applications, such as predicting future states
of a system in the physical domain based on the fixed relations (e.g. gravitational
forces) (Battaglia et al, 2016) among nodes and the traffic speed forecasting on the
road networks (Yu et al, 2018a; Li et al, 2018e). Existing works adopt different
frameworks to model the transformation process.

Generally speaking, the straightforward way in dealing with the node translation
problem is to regard it as the node prediction problem and utilize the conventional
GNNs as encoder to learn the node embedding. Then, based on the node embed-
ding, we can predict the node attributes of the target graphs. While solving the
node transformation problem in specific domains, there come various unique re-
quirements, such as considering the spatial and temporal patterns in the traffic flow
prediction task. Thus, in this section, we focus on introducing three typical node
transformation models in dealing with problems in different areas.

12.2.2 Interaction Networks

Battaglia et al (2016) proposed the interaction network in the task of reasoning about
objects, relations, and physics, which is central to human intelligence, and a key
goal of artificial intelligence. Many physical problems, such as predicting what will
happen next in physical environments or inferring underlying properties of complex
scenes, are challenging because their elements are composed and can influence each
other as a whole system. It is impossible to solve such problems by considering each
object and relation separately. Thus, the node transformation problem can help deal
with this task via modeling the interactions and dynamics of elements in a complex
system. To deal with the node transformation problem that is formalized in this sce-
nario, an interaction network (IN) is proposed, which combines two main powerful
approaches: structured models, simulation, and deep learning. Structured models
are operated as the main component based on the GNNs to exploit the knowledge
of relations among objects. The simulation part is an effective method for approx-
imating dynamical systems, predicting how the elements in a complex system are
influenced by interactions with one another, and by the dynamics of the system.

The overall complex system can be represented as an attributed, directed multi-
graph G , where each node represents an object and the edge represents the rela-
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tionship between two objects, e.g., a fixed object attached by a spring to a freely
moving mass. To predict the dynamics of a single node (i.e., object), there is an
object-centric function, ht+1

i = fO(ht
i) with the object’s state ht at time t of the ob-

ject vi as the inputs and a future state ht+1
i at next time step as outputs. Assuming

two objects have one directed relationship, the first object vi influences the second
object v j via their interaction. The effect or influence of this interaction, et+1

i, j is pre-
dicted by a relation-centric function, fR, with the object states as well as attributes
of their relationship as inputs. The object updating process is then written as:

et+1
i, j = fR(ht

i,ht
j,ri); ht+1

i = fO(ht
i,et+1

i, j ), (12.1)

where ri refers to the interaction effects that node vi receives.
It worth noting that the above operations are for an attributed, directed multi-

graph because the edges/ relations can have attributes, and there can be multiple
distinct relations between two objects (e.g., rigid and magnetic interactions). In
summary, at each step, the interaction effects generated from each relationship is
calculated and then an aggregation function is utilized to summarize all the interac-
tions effects on the relevant objects and update the states of each object.

An IN applies the same fR and fO to every target nodes, respectively, which
makes their relational and object reasoning able to handle variable numbers of arbi-
trarily ordered objects and relations (i.e., graphs with variables sizes). But one addi-
tional constraint must be satisfied to maintain this: the aggregation function must be
commutative and associative over the objects and relations, for example summation
as aggregation function satisfies this, but division would not.

The IN can be included in the framework of Message Passing Neural Network
(MPNN), with the message passing process, aggregation process, and node updat-
ing process. However, different from MPNN models which focus on binary relations
(i.e., there is one edge per pair of nodes), IN can also handle hyper-graph, where the
edges can correspond to n-th order relations by combining n nodes (n � 2). The
IN has shown a strong ability to learn accurate physical simulations and generalize
their training to novel systems with different numbers and configurations of objects
and relations. They could also learn to infer abstract properties of physical systems,
such as potential energy. The IN implementation is the first learnable physics en-
gine that can scale up to real-world problems, and is a promising template for new
AI approaches to reasoning about other physical and mechanical systems, scene
understanding, social perception, hierarchical planning, and analogical reasoning.

12.2.3 Spatio-Temporal Convolution Recurrent Neural Networks

Spatio-temporal forecasting is a crucial task for a learning system that operates in
a dynamic environment. It has a wide range of applications from autonomous ve-
hicles operations, to energy and smart grid optimization, to logistics and supply
chain management. The traffic forecasting on road networks, the core component
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of the intelligent transportation systems, can be formalized as a node transforma-
tion problem, the goal of which is to predict the future traffic speeds (i.e., node
attributes) of a sensor network (i.e., graph) given historic traffic speeds (i.e., his-
tory node attributes). This type of node transformation is unique and challenging
due to the complex spatio-temporal dependencies in a series of graphs and inherent
difficulty in the long term forecasting. To deal with this, each pair-wise spatial cor-
relation between traffic sensors is represented using a directed graph whose nodes
are sensors and edge weights denote proximity between the sensor pairs measured
by the road network distance. Then the dynamics of the traffic flow is modeled as a
diffusion process and the diffusion convolution operation is utilized to capture the
spatial dependency. The overall Diffusion Convolutional Recurrent Neural Network
(DCRNN) integrates diffusion convolution, the sequence to sequence architecture
and the scheduled sampling technique.

Denote the node information (e.g., traffic flow) observed on a graph G as a graph
signal F and let Ft represent the graph signal observed at time t, the temporal node
transformation problem aims to learn a mapping from T 0 historical graph signals
to future T graph signals as: [Ft�T 0+1, ...,Ft ;G ] ! [Ft+1, ...,Ft+T ;G ]. The spatial
dependency is modeled by relating node information to a diffusion process, which
is characterized by a random walk on G with restart probability a 2 [0,1] and a
state transition matrix D�1

O W . Here DO is the out-degree diagonal matrix, and 1.
After many time steps, such Markov process converges to a stationary distribution
P 2 RN⇥N whose i-th row represents the likelihood of diffusion from node vi. Thus,
a diffusion convolutional layer can be defined as

H:,q = f (
P

Â
p=1

F:,p ?G fQp,q,:,:), q 2 {1, ...,Q} (12.2)

where the diffusion convolution operation is defined as

F:,p ?G fq =
K�1

Â
k=0

(fk,1(D�1
O W )k +fk,2(D�1

I W T )k)F:,p, p 2 {1, ...,P} (12.3)

Here the DO and DI refer to the out-degree and in-degree diagonal matrix respec-
tively. P and Q refer to the feature dimension of the input and output node features
at each diffusion convolution layer. The diffusion convolution is defined on both di-
rected and undirected graphs. When applied to undirected graphs, the existing graph
convolution neural networks (GCN) can be considered as a special case of diffusion
convolution network.

To deal with the temporal dependency during the node transformation process,
the recurrent neural networks (RNN) or Gated Recurrent Unit (GRU) can be lever-
aged. For example, by replacing the matrix multiplications in GRU with the diffu-
sion convolution, the Diffusion Convolutional Gated Recurrent Unit (DCGRU) is
defined as
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rt = s(Qr ?G [Ft ,Ht�1]+bt
r) (12.4)

ut = s(Qu ?G [Ft ,Ht�1]+bt
u)

Ct = Tanh(s(Qc ?G [Ft ,(rt �Ht�1)]+bt
c))

Ht�1 = ut �Ht�1 +(1�ut)�Ct ,

where Xt and Ht denote the input and output of all the nodes at time t, rt and ut are
reset gate and update gate at time t, respectively. ?G denotes the diffusion convolu-
tion defined in equation 12.3. Qr,Qu,Qc are parameters for the corresponding filters
in the diffusion network.

Another typical spatio-temporal graph convolution network for spatial-temporal
node transformation is proposed by (Yu et al, 2018a). This model comprises sev-
eral spatio-temporal convolutional blocks, which are a combination of graph con-
volutional layers and convolutional sequence learning layers, to model spatial and
temporal dependencies. Specifically, the framework consists of two spatio-temporal
convolutional blocks (ST-Conv blocks) and a fully-connected output layer in the
end. Each ST-Conv block contains two temporal gated convolution layers and one
spatial graph convolution layer in the middle. The residual connection and bottle-
neck strategy are applied inside each block. The input sequence of node information
is uniformly processed by ST-Conv blocks to explore spatial and temporal depen-
dencies coherently. Comprehensive features are integrated by an output layer to gen-
erate the final prediction. In contrast to the above mentioned DCGRU, this model is
built completely from convolutional structures to capture both spatial and temporal
patterns without any recurrent neural network; each block is specially designed to
uniformly process structured data with residual connection and bottleneck strategy
inside.

12.3 Edge-level Transformation

12.3.1 Definition of Edge-level Transformation

Edge-level transformation aims to generate the graph topology and edge attributes of
the target graph conditioning on the input graph. It requires the edge set E and edge
attributes E to change while the graph node set and node attributes are fixed during
the transformation: T : GS(V ,ES,F,ES) ! GT (V ,ET ,F,ET ). Edge transformation
has a wide range of real-world applications, such as modeling chemical reactions
(You et al, 2018a), protein folding (Anand and Huang, 2018) and malware cyber-
network synthesis (Guo et al, 2018b). For example, in social networks where people
are the nodes and their contacts are the edges, the contact graph among them varies
dramatically across different situations. For example, when the people are organiz-
ing a riot, it is expected that the contact graph to become denser and several special
“hubs” (e.g., key players) may appear. Hence, accurately predicting the contact net-
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work in a target situation is highly beneficial to situational awareness and resource
allocation.

Numerous efforts have been contributed to edge-level graph transformation. Here
we introduce three typical methods in modelling the edge-level graph transforma-
tion problem, including graph transformation generative adversarial networks (GT-
GAN), multi-scale graph transformation networks (Misc-GAN), and graph transfor-
mation policy networks (CTPN).

12.3.2 Graph Transformation Generative Adversarial Networks

Generative Adversarial Network (GANs) is an alternative method for generation
problems. It is designed based on a game theory scenario called the min-max game,
where a discriminator and a generator compete against each other. The generator
generates data from stochastic noise, and the discriminator tries to tell whether it is
real (coming from a training set) or fabricated (from the generator). The absolute
difference between carefully calculated rewards from both networks is minimized
so that both networks learn simultaneously as they try to outperform each other.
GANs can be extended to a conditional model if both the generator and discrimi-
nator are conditioned on some extra auxiliary information, such as class labels or
data from other modalities. Conditional GANs is realized by feeding the conditional
information into the both the discriminator and generator as additional input layer.
In this scenario, when the conditional information is a graph, the conditional GANs
can be utilized to handle graph transformation problem to learn the mapping from
the conditional graph (i.e., input graph) to the target graph (i.e., output graph). Here,
we introduce two typical edge-level graph transformation techniques that are based
on Conditional GANs.

A novel Graph-Translation-Generative Adversarial Networks (GT-GAN) pro-
posed by (Guo et al, 2018b) can successfully implement and learn the mapping
from the input to target graphs. GT-GAN consists of a graph translator T and a
conditional graph discriminator D . The graph translator T is trained to produce
target graphs that cannot be distinguished from “real” ones by our conditional graph
discriminator D . Specifically, the generated target graph GT 0 = T (GS,U) cannot be
distinguished from the real one, GT , based on the current input graph GS. U refers to
the random noises. T and D undergo an adversarial training process based on input
and target graphs by solving the following loss function:

L (T ,D) = EGS,GT ⇠S [logD(GT |GS)] (12.5)
+EGS⇠S [log(1�D(T (GS,U)|GS))],

where S refers to the dataset. T tries to minimize this objective while an adversar-
ial D tries to maximize it, i.e. T ⇤ = argminT maxD L (T ,D). The graph translator
includes two parts: graph encoder and graph decoder. A graph convolution neural net
(Kawahara et al, 2017) is extended to serve as the graph encoder in order to embed
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the input graph into node-level representations, while a new graph deconvolution
net is designed as the decoder to generate the target graph. Specifically, the encoder
consists of edge-to-edge and edge-to-node convolution layers, which first extract la-
tent edge-level representations and then node-level representations {Hi}N

i=1, where
Hi 2 RL refers to the latent representation of node vi. The decoder consists of node-
to-edge and edge-to-edge deconvolution layers to first get each edge representation
Êi, j based on Hi and Hj, and then finally get edge attribute tensor E based on Ê.
Based on the graph deconvolution above, it is possible to utilize skips to link the
extracted edge latent representations of each layer in the graph encoder with those
in the graph decoder.

Specifically, in the graph translator, the output of the l-th “edge deconvolution”
layer in the decoder is concatenated with the output of the l-th “edge convolution”
layer in the encoder to form joint two channels of feature maps, which are then
input into the (l + 1)-th deconvolution layer. It is worth noting that one key factor
for effective translation is the design of a symmetrical encoder-decoder pair, where
the graph deconvolution is a mirrored reversed way from graph convolution. This
allows skip-connections to directly translate different level’s edge information at
each layer.

The graph discriminator is utilized to distinguish between the “translated” target
graph and the “real” ones based on the input graphs, as this helps to train the gen-
erator in an adversarial way. Technically, this requires the discriminator to accept
two graphs simultaneously as inputs (a real target graph and an input graph or a
generated graph and an input graph) and classify the two graphs as either related or
not. Thus, a conditional graph discriminator (CGD) that leverages the same graph
convolution layers in the encoder is utilized for the graph classification. Specifically,
the input and target graphs are both ingested by the CGD and stacked into a tensor,
which can be considered a 2-channel input. After obtaining the node representa-
tions, the graph-level embedding is computed by summing these node embeddings.
Finally, a softmax layer is implemented to distinguish the input graph-pair from the
real graph or generated graph.

To further handle the situation when the pairing information of the input and
the output is not available, Gao et al (2018b) proposes an Unpaired Graph Trans-
lation Generative Adversarial Nets (UGT-GAN) based on Cycle-GAN (Zhu et al,
2017) and incorporate the same encoder and deconder in GT-GAN to handle the
unpaired graph transformation problems. The cycle consistency loss is utilized and
generalized into graph cycle consistency loss for unpaired graph translation. Specif-
ically, graph cycle consistency adds an opposite direction translator from target to
source domain Tr : GT �! GS by training the mappings for both directions simulta-
neously, and adding a cycle consistency loss that encourages Tr(T (GS)) ⇡ GS and
T (Tr(GT )) ⇡ GT . Combining this loss with adversarial losses on domains GT and
GS yields the full objective for unpaired graph translation.
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12.3.3 Multi-scale Graph Transformation Networks

Many real-world networks typically exhibit hierarchical distribution over graph
communities. For instance, given an author collaborative network, research groups
of well-established and closely collaborated researchers could be identified by the
existing graph clustering methods in the lower-level granularity. While, from a
coarser level, we may find that these research groups constitute large-scale com-
munities, which correspond to various research topics or subjects. Thus, it is neces-
sary to capture the hierarchical community structures over the graphs for edge-level
graph transformation problem. Here, we introduce a graph generation model for
learning the distribution of the graphs, which, however, is formalized as a edge-level
graph transformation problem.

Based on GANs, a multi-scale graph generative model, Misc-GAN, can be uti-
lized to model the underlying distribution of graph structures at different levels of
granularity. Inspired by the success of deep generative models in image translation,
a cycle-consistent adversarial network (CycleGAN) (Zhu et al, 2017) is adopted to
learn the graph structure distribution and then generate a synthetic coarse graph at
each granularity level. Thus, the graph generation task can be realized by ”transfer-
ring” the hierarchical distribution from the graphs in the source domain to a unique
graph in the target domain.

In this framework, the input graph is characterized as several coarse-grained
graphs by aggregating the strongly coupled nodes with a small algebraic distance
to form coarser nodes. Overall, the framework can be separated into three stages.
First, the coarse-grained graphs at K levels of granularity are constructed from the
input graph adjacent matrix AS. The adjacent matrix of the coarse-grained graph
A(k)

S 2 RN(k)⇥N(k) at the k-th layer is defined as follows:

A(k)
S = P(k�1)>...P(1)>ASP(1)...P(k�1), (12.6)

where A(0)
S = AS and P(k) 2 RN(k)⇥N(k) is a coarse-grained operator for the kth level

and N(k) refers to the number of nodes of the coarse-grained graph at level k. In the
next stage, each coarse-grained graph at each level k will be reconstructed back into
a fine graph adjacent matrix A(k)

T 2 RN(k)⇥N(k) as follows:

A(k)
T = R(1)>...R(k�1)>A(k)

S R(k�1)...R(1), (12.7)

where R(k) 2 RN(k)⇥N(k) is the reconstruction operator for the kth level. Thus all the
reconstructed fine graphs at each layer are on the same scale. Finally, these graphs
are aggregated into a unique one by a linear function to get the final adjacent matrix
as follows: AT = ÂK

k=1 wkA(k)
T +bkI, where wk 2 R and bk 2 R are weights and bias.
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12.3.4 Graph Transformation Policy Networks

Beyond the general framework for edge-level transformation problem, it is neces-
sary to deal with some domain-specific problems which may need to incorporate
some domain knowledge or information into transformation process. For example,
the chemical reaction product prediction problem is a typical edge-level transforma-
tion problem, where the input reactant and reagent molecules can be jointly repre-
sented as input graphs, and the process of generating product molecules (i.e., output
graphs) from reactant molecules can be formulated as a set of edge-level graph
transformations. Formalizing the chemical reaction product prediction problem as a
edge-level transformation problem is beneficial due to two reasons: (1) it can cap-
ture and utilize the molecular graph structure patterns of the input reactants and
reagents(i.e., atom pairs with changing connectivity); and (2) it can automatically
choose from these reactivity patterns a correct set of reaction triples to generate the
desired products.

Do et al (2019) proposed a Graph Transformation Policy Network (GTPN), a
novel generic method that combines the strengths of graph neural networks and re-
inforcement learning, to learn reactions directly from data with minimal chemical
knowledge. The GTPN originally aims to generate the output graph by formaliz-
ing the graph transformation process as a Markov decision process and modifying
the input source graph through several iterations. From the perspective of chemi-
cal reaction side, the process of reaction product prediction can be formulated as
predicting a set of bond changes given the reactant and reagent molecules as input.
A bond change is characterized by the atom pair that holds the bond (where is the
change) and the new bond type (what is the change).

Mathematically, given a graph of reactant molecule as input graph, GS, they pre-
dict a set of reaction triples which transforms GS into a graph of product molecule
GT . This process is modeled as a sequence consisting of tuples like (z t ,vt

i,v
t
j,b

t)
where vt

i and vt
j are the selected nodes from node set at step t whose connection

needs to be modified, bt is the new edge type of (vt
i,v

t
j) and z t is a binary signal

that indicates the end of the sequence. Generally, at every step of the forward pass,
GTPN performs seven major steps: 1) computing the atom representation vectors
through message passing neural network (MPNN); 2) computing the most possible
K reaction atom pairs; 3) predicting the continuation signal z t ; 4) predicting the
reaction atom pair (vt

i,v
t
j); 5) predicting a new bond type bt of this atom pair; 6)

updating the atom representations; and 7) updating the recurrent state.
Specifically, the above iterative process of edge-level transformation is formu-

lated as a Markov Decision Process (MDP) characterized by a tuple (S ,A , fP, fR,G ),
where S is a set of states, A is a set of actions, fP is a state transition function, fR is
a reward function, and G is a discount factor. Thus, the overall model is optimized
via the reinforcement learning. Specifically, a state st 2 S is a immediate graph
that is generated at the step t, and s0 refers to the input graph. An action at 2 A per-
formed at step t is represented as a tuple (z t ,(vt

i,v
t
j,b

t)). The action is composed of
three consecutive sub-actions: predicting z t , (vt

i,v
t
j) and bt respectively. In the state
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transition part, If z t = 1, the current graph G t is modified based on the reaction
triple (vt

i,v
t
j,b

t) to generate a new intermediate graph G t+1. Regarding the reward,
both immediate rewards and delayed rewards are utilized to encourage the model to
learn the optimal policy faster. At every step t, if the model predicts (z t ,(vt

i,v
t
j,b

t))
correctly, it will receive a positive reward for each correct sub-action. Otherwise, a
negative reward is given. After the prediction process has terminated, if the gener-
ated products are exactly the same as the ground-truth products, a positive delayed
reward is also given, otherwise a negative reward.

Different from the encoder-decoder frameworks of GT-GAN, GTPN is a typical
example of reinforcement learning-based graph transformation network, where the
target graph is generated by making modifications on the input graphs in a itera-
tive way. Reinforcement learning (RL) is a commonly used framework for learning
controlling policies and generation process by a computer algorithm, the so-called
agent, through interacting with its environment. The nature of reinforcement learn-
ing methods (i.e.,a sequential generation process) make it a suitable framework for
graph transformation problems which sometime requires the step-by-step edits on
the input graphs to generate the final target output graphs.

12.4 Node-Edge Co-Transformation

12.4.1 Definition of Node-Edge Co-Transformation

Node-edge co-transformation (NECT) aims to generate node and edge attributes of
the target graph conditioned on those of the input graph. It requires that both nodes
and edges can vary during the transformation process between the source graph and
the target graph as follows: GS(VS,ES,FS,ES) ! GT (VT ,ET ,FT ,ET ). There are two
categories of techniques used to assimilate the input graph to generate the target
graph embedding-based and editing-based.

Embedding-based NECT usually encodes the source graph into latent represen-
tations using an encoder that contains higher-level information on the input graph
which can then be decoded into the target graph by a decoder (Jin et al, 2020c,
2018c; Kaluza et al, 2018; Maziarka et al, 2020b; Sun and Li, 2019). These meth-
ods are usually based on either conditional VAEs (Sohn et al, 2015) or conditional
GANs (Mirza and Osindero, 2014). Three main techniques will be introduced in this
section, including junction-tree variational auto-encoder, molecule cycle-consistent
adversarial networks and directed acyclic graph transformation networks.

12.4.1.1 Junction-tree Variational Auto-encoder Transformer

The goal of molecule optimization, which is one of the important molecule genera-
tion problems, is to optimize the properties of a given molecule by transforming it
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into a novel output molecule with optimized properties. The molecule optimization
problem is typically formalized as a NECT problem where the input graph refers to
the initial molecule and the output graph refers to the optimized molecule. Both the
node and edge attributes can change during the transformation process.

The Junction-tree Variational Auto-encoder (JT-VAE) is motivated by the key
challenge of molecule optimization in the domain of drug design, which is to find
target molecules with the desired chemical properties (Jin et al, 2018a). In terms of
the model architecture, JT-VAE extends the VAE (Kingma and Welling, 2014) to
molecular graphs by introducing a suitable encoder and a matching decoder. Under
JT-VAE, each molecule is interpreted as being formalized from subgraphs chosen
from a dictionary of valid components. These components serve as building blocks
when encoding a molecule into a vector representation and decoding latent vectors
back into optimized molecular graphs. The dictionary of components, such as rings,
bonds and individual atoms, is large enough to ensure that a given molecule can
be covered by overlapping clusters without forming cluster cycles. In general, JT-
VAE generates molecular graphs in two phases, by first generating a tree-structured
scaffold over chemical substructures and then combining them into a molecule with
a graph message-passing network.

The latent representation of the input graph G is encoded by a graph message-
passing network (Dai et al, 2016; Gilmer et al, 2017). Here, let xv denote the feature
vector of the vertex v, involving properties of the vertex such as the atom type and
valence. Similarly, each edge (u,v) 2 E has a feature vector xvu indicating its bond
type. Two hidden vectors nuv and nvu denote the message from u to v and vice versa.
In the encoder, messages are exchanged via loopy belief propagation:

n(t)
uv = t(W g

1 xu +W g
2 xuv +W g

3 Â
w2N(u)\v

n(t�1)
wu ), (12.8)

where vt
uv is the message computed in the t-th iteration, initialized with n(0)

uv = 0, t(·)
is the ReLU function, W g

1 , W g
2 and W g

3 are weights, and N(u) denotes the neighbors
of u. Then, after T iterations, the latent vector of each vertex is generated capturing
its local graphical structure:

hu = t(Ug
1 xu + Â

v2N(u)

Ug
2 n(T )

vu ), (12.9)

where Ug
1 and Ug

2 are weights. The final graph representation is hG = Âi hi/|V |,
where |V | is the number of nodes in the graph. The corresponding latent variable
zG can be sampled from N (zG; µG ,s2

G ) and µG and s2
G can be calculated from hG

via two separate affine layers.
A junction tree can be represented as (V ,E ,X ) whose node set is V = (C1, ...,Cn)

and edge set is E = (E1, ...,En). This junction tree is labeled by the label dictionary
X . Similar to the graph representation, each cluster Ci is represented by a one-hot xi
and each edge (Ci,Cj) corresponds to two message vectors vi j and v ji. An arbitrary
leaf node is picked as the root and messages are propagated in two phases:
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si j = Â
k2N(i)\ j

vki (12.10)

zi j = s(W zxi +Uzsi j +bz)

rki = s(W rxi +Urvki +br)

ṽi j = tanh(Wxi +U Â
k2N(i)\ j

rki �vki)

vi j = (1� zi j)� si j + zi j � ṽi j.

hi, the latent representation of node vi can now be calculated:

hi = t(W oxi + Â
k2N(u)

Uovki) (12.11)

The final tree representation is hTG
= hroot . zTG

is sampled in a similar way as in
the encoding process.

Under the JT-VAE framework, the junction tree is decoded from zTG
using a

tree-structured decoder that traverses the tree from the root and generates nodes in
their depth-first order. During this process, a node receives information from other
nodes, and this information is propagated through message vectors hi j. Formally,
let Ẽ = {(i1, j1), ...,(im, jm)} be the set of edges traversed over the junction tree
(V ,E ), where m = 2|E | because each edge is traversed in both directions. The
model visits node it at time t. Let Ẽt be the first t edges in Ẽ . The message is updated
as hit , jt = GRU(xit ,{hk,it }(k,it )2Ẽt ,k 6= jt ), where xit corresponds to the node features.
The decoder first makes a prediction regarding whether the node it still has children
to be generated, in which the probability is calculated as:

pt = s(ud · t(W d
1 xit +W d

2 zTG
+W d

3 Â
(k,it )2Ẽt

hk,it )), (12.12)

where ud , W d
1 , W d

2 and W d
3 are weights. Then, when a child node j is generated from

its parent i, its node label is predicted with:

q j = so f tmax(Ul · t(W l
1zTG

+W l
2hi j)), (12.13)

where Ul , W l
1 and W l

2 are weights and q j is a distribution over label dictionary X .
The final step of the model is to reproduce a molecular graph G to represent

the predicted junction tree (V̂ , Ê ) by assembling the subgraphs together into the
final molecular graph. Let G (TG ) be a set of graphs corresponding to the junction
tree TG . Decoding graph Ĝ from the junction tree T̂G = (V̂ , Ê ) is a structured
prediction:

Ĝ = arg max
G 0=G (T̂G )

f a(G 0), (12.14)

where f a is a scoring function over candidate graphs. The decoder starts by sampling
the assembly of the root and its neighbors according to their scores, then proceeds to
assemble the neighbors and associated clusters. In terms of scoring the realization
of each neighborhood, let Gi be the subgraph resulting from a particular merging of
cluster Ci in the tree with its neighbors Cj, j 2 NT̂G

(i). Gi is scored as a candidate
subgraph by first deriving a vector representation hGi , and f a

i (Gi) = hGi · zG is the
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subgraph score. For atoms in Gi, let av = i if v 2 Ci and av = j if v 2 Cj\Ci to mark
the position of atoms in the junction tree and retrieve messages m̂i, j, summarizing
the subtree under i along the edge (i, j) obtained by the tree encoder. Then the
neural messages can be obtained and aggregated similarly to the encoding step with
parameters:

µ(t)
uv = t(W a

1 xu +W a
2 xuv +W a

3 µ̂(t�1)
uv ) (12.15)

µ̃(t�1)
uv =

(
Âw2N(u)\v µ(t�1)

wu au = av

m̂au,av +Âw2N(u)\v µ(t�1)
wu au 6= av,

where W a
1 , W a

2 and W a
3 are weights.

12.4.1.2 Molecule Cycle-Consistent Adversarial Networks

Cycle-consistent adversarial networks, an alternative to achieve embedding-based
NECT, were originally developed to achieve image-to-image transformations. The
aim here is to learn to transform an image from a source domain to a target domain in
the absence of paired examples by using an adversarial loss. To promote the chemi-
cal compound design process, this idea has been borrowed for graph transformation.
For instance, Molecule Cycle-Consistent Adversarial Networks (Mol-CycleGAN)
have been proposed to generate optimized compounds with high structural similar-
ity to the originals (Maziarka et al, 2020b). Given a molecule GX with the desired
molecular properties, Mol-CycleGAN aims to train a model to perform the trans-
formation G : GX ! GY and then use this model to optimize the molecules. Here
GY is the set of molecules without the desired molecular properties. In order to rep-
resent the sets GX and GY , this model requires a reversible embedding that allows
both the encoding and decoding of molecules. To achieve this, JT-VAE is employed
to provide the latent space during the training process, during which the distance
between molecules required to calculate the loss function can be defined directly.
Each molecule is represented as a point in latent space, assigned based on the mean
of the variational encoding distribution.

For the implementation, the sets GX and GY must be defined (e.g., inactive/active
molecules), after which the mapping functions G : GX ! GY and F : GY ! GX are
introduced. The discriminators DX and DY are proposed to force generators F and
G to generate samples from a distribution close to the distributions of GX and GY .
For this process, F , G, DX and DY are modeled by neural networks. This approach
to molecule optimization is designed to (1) take a prior molecule x with no specified
features from set GX and compute its latent space embedding; (2) use generative
neural network G to obtain the embedding of molecule G(x) that has this feature but
is also similar to the original molecule x; and (3) decode the latent space coordinates
given by G(x) to obtain the optimized molecule.

The loss function to train Mol-CycleGAN is:
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L(G,F,DX ,DY ) = LGAN(G,DY ,GX ,GY )+LGAN(F,DX ,GY ,GX ) (12.16)
+l1Lcyc(G,F)+l2Lidentity(G,F),

and G⇤,F⇤ = argminG,F maxDX ,DY L(G,F,DX ,DY ). The adversarial loss is utilized:

LGAN(G,DY ,GX ,GY ) =
1
2
E

y⇠pGY
data

[(DY (y)�1)2] (12.17)

+
1
2
E

x⇠pGX
data

[DY (G(x))2],

which ensures that the generator G (and F) generates samples from a distribution
close to the distribution of GY (or GX ), denoted by pGY

data (or pGX
data). The cycle con-

sistency loss

Lcyc(G,F) = E
y⇠pGY

data
[kG(F(y))� yk1] (12.18)

+E
x⇠pGX

data
[kF(G(x))� xk1],

reduces the space available to the possible mapping functions such that for a
molecule x from set GX , the GAN cycle constrains the output to a molecule similar
to x. The inclusion of the cyclic component acts as a regularization factor, making
the model more robust. Finally, to ensure that the generated molecule is close to the
original, identity mapping loss is employed:

Lidentity(G,F) = E
y⇠pGY

data
[kF(y)� yk1] (12.19)

+E
x⇠pGX

data
[kG(x)� xk1],

which further reduces the space available to the possible mapping functions and
prevents the model from generating molecules that lay far away from the starting
molecule in the latent space of JT-VAE.

12.4.1.3 Directed Acyclic Graph Transformation Networks

Another example of embedding-based NECT is a neural model for learning deep
functions on the space of directed acyclic graphs (DAGs) (Kaluza et al, 2018). Math-
ematically, the neural methodologies developed to handle graph-structured data can
be regarded as function approximation frameworks where both the domain and the
range of the target function can be graph spaces. In the area of interest here, the
embedding and synthesis methodologies are gathered into a single unified frame-
work such that functions can be learned from one graph space onto another graph
space without the need to impose a strong assumption of independence between the
embedding and generative process. Note that only functions in DAG space are con-
sidered here. A general encoder-decoder framework for learning functions from one
DAG space onto another has been developed.
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Here, RNN is employed to model the function F , denoted as D2DRNN. Specif-
ically, the model consists of an encoder Ea with model parameters a that compute
a fixed-size embedding of the input graph Gin, and a decoder Db with parameters
b , using the embedding as input and producing the output graph Ĝout . Alternatively,
the DAG-function can be defined as F(Gin) := Db (Ea(Gin)).

The encoder is borrowed from the deep-gated DAG recursive neural network
(DG-DAGRNN) (Amizadeh et al, 2018), which generalizes the stacked recurrent
neural networks (RNNs) on sequences to DAG structures. Each layer of DG-
DAGRNN consists of gated recurrent units (GRUs) (Cho et al, 2014a), which are
repeated for each node vi 2 Gin. The GRU corresponding to node v contains an ag-
gregated representation of the hidden states of the units regarding its predecessors
p(v). For an aggregation function A:

hv = GRU(xv,h0
v), where v0 = A({hu|u 2 p(v)}). (12.20)

Since the ordering of the nodes is defined by the topological sort of Gin, all the
hidden states hv can be computed with a single forward pass along a layer of DG-
DAGRNN. The encoder contains multiple layers, each of which passes hidden states
to the recurrent units in the subsequent layer corresponding to the same node.

The encoder outputs an embedding Hin = Ea(Gin), which serves as the input of
the DAG decoder. The decoder follows the local-based node-sequential generation
style. Specifically, first, the number of nodes of the target graph is predicted by a
multilayer perceptron (MLP) with a Poisson regressor output layer, which takes the
input graph embedding Hin and outputs the mean of a Poisson distribution describ-
ing the output graph. Whether it is necessary to add an edge eu,vn for all the nodes
u 2 {v1, ...,vn�1} already in the graph is determined by a module of MLP. Since the
output nodes are generated in their topological order, the edges are directed from
the nodes added earlier to the nodes added later. For each node v, the hidden state
hv is calculated using a similar mechanism to that used in the encoder, after which
they are aggregated and fed to a GRU. The other input for the GRU consists of the
aggregated states of all the sink nodes generated so far. For the first node, the hidden
state is initialized based on the encoder’s output. Then, the output node features are
generated based on its hidden state using another module of MLP. Finally, once the
last node has been generated, the edges are introduced with probability 1 for sinks
in the graph to ensure a connected graph with only one sink node as an output.

12.4.2 Editing-based Node-Edge Co-Transformation

Unlike the encoder-decoder framework, modification-based NECT directly mod-
ifies the input graph iteratively to generate the target graphs (Guo et al, 2019c;
You et al, 2018a; Zhou et al, 2019c). Two methods are generally used to edit the
source graph. One employs a reinforcement-learning agent to sequentially modify
the source graph based on a formulated Markov decision process (You et al, 2018a;
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Zhou et al, 2019c). The modification at each step is selected from a defined action
set that includes ”add node”, ”add edge”, ”remove bonds” and so on. Another is
to update the nodes and edges from the source graph synchronously in a one-shot
manner through the MPNN using several iterations (Guo et al, 2019c).

12.4.2.1 Graph Convolutional Policy Networks

Motivated by the large size of chemical space, which can be an issue when design-
ing molecular structures, graph convolutional policy networks (GCPNs) serve as
useful general graph convolutional network-based models for goal-directed graph
generation through reinforcement learning (RL) (You et al, 2018a). In this model,
the generation process can be guided towards the specific desired objectives, while
restricting the output space based on underlying chemical rules. To achieve goal-
directed generation, three strategies, namely graph representation, reinforcement
learning, and adversarial trainings are adopted. In GCPN, molecules are represented
as molecular graphs, and partially generated molecular graphs can be interpreted as
substructures. GCTN is designed as an RL agent which operates within a chemistry-
aware graph generation environment. A molecule is successively constructed by ei-
ther connecting a new substructure or atom to an existing molecular graph by adding
a bond. GCPN is trained to optimize the domain-specific properties of the source
molecule by applying a policy gradient to optimize it via a reward composed of
molecular property objectives and adversarial loss; it acts in an environment which
incorporates domain-specific rules. The adversarial loss is provided by a GCN-based
discriminator trained jointly on a dataset of example molecules.

An iterative graph generation process is designed and formulated as a general
decision process M = (S ,A ,P,R,g), where S = {si} is the set of states that com-
prises all possible intermediate and final graphs. A = (ai) is the set of actions
that describe the modifications made to the current graph during each iteration,
P represents the transition dynamics that specify the possible outcomes of carry-
ing out an action p(st+1|st , ...,s0,at), R(st) = rt is a reward function that specifies
the reward after reaching state st and g is the discount factor. The graph genera-
tion process can now be formulated as (s0,a0,r0, ...,sn,an,rn), and the modifica-
tion of the graph at each time can be described as a state transition distribution:
p(st+1|st , ...,s0) = Âat p(at |st , ...,s0)p(st+1|st , ...,s0,at), where p(at |st , ...,s0) is rep-
resented as a policy network pq . Note that in this process, the state transition dy-
namics are designed to satisfy the Markov property p(st+1|st , ...s0) = p(st+1|st).

In this model, a distinct, fixed-dimension, homogeneous action space is defined
and amenable to reinforcement learning, where an action is analogous to link pre-
diction. Specifically, a set of scaffold subgraphs {C1, ...,Cs} is first defined based on
the source graph, thus serving as a subgraph vocabulary that contains the subgraphs
to be added into the target graph during graph generation. Define C = [s

i=1Ci. Given
the modified graph Gt at step t, the corresponding extended graph can be defined as
Gt [C. Under this definition, an action can either correspond to connecting a new
subgraph Ci to a node in Gt or connecting existing nodes within graph Gt . GAN is
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also employed to define the adversarial rewards to ensure that generated molecules
do indeed resemble the originals.

Node embedding is achieved by message passing over each edge type for L layers
through GCN. At the l-th layer of GCN, messages from different edge types are ag-
gregated to calculate the node embedding H(l+1) 2R(n+c)⇥k of the next layer, where
n and c are the sizes of Gt and C, respectively, and k is the embedding dimension:

H(l+1) = AGG(ReLU({D̂� 1
2

i ÊiD̂
� 1

2
i H(l)W (l)

i },8i 2 (1, ...,b))). (12.21)

Ei is the ith slice of the edge-conditioned adjacency tensor E, and Êi = Ei + I; D̂i =

Âk Êi jk and W (l)
i is the weight matrix for the ith edge type. AGG denotes one of the

aggregation functions from {MEAN,MAX ,SUM,CONTACT}.
The link prediction-based action at ensures each component samples from a pre-

diction distribution governed by the equations below:

at = CONCAT (a f irst ,asecond ,aedge,astop) (12.22)

f f irst(st) = so f tmax(m f (X)), a f irst ⇠ f f irst(st) 2 {0,1}n (12.23)

fsecond(st) = so f tmax(ms(Xa f irst ,X)), asecond ⇠ fsecond(st) 2 {0,1}n+c

fedge(st) = so f tmax(me(Xa f irst ,X)), aedge ⇠ fedge(st) 2 {0,1}b

fstop(st) = so f tmax(mt(AGG(X))), astop ⇠ fstop(st) 2 {0,1}

Here m f , ms, me and m f denote MLP modules.

12.4.2.2 Molecule Deep Q-networks Transformer

In addition to GCPN, molecule deep Q-networks (MolDQN) has also been devel-
oped for molecule optimization under the node-edge co-transformation problem uti-
lizing an editing-based style. This combines domain knowledge of chemistry with
state-of-the-art reinforcement learning techniques (double Q-learning and random-
ized value functions) (Zhou et al, 2019c). In this field, traditional methods usually
employ policy gradients to generate graph representations of molecules, but these
suffer from high variance when estimating the gradient (Gu et al, 2016). In com-
parison, MolDQN is based on value function learning, which is usually more stable
and sample efficient. MolDQN also avoids the need for expert pretraining on some
datasets, which may lead to lower variance but limits the search space considerably.

In the framework proposed here, modifications of molecules are directly defined
to ensure 100% chemical validity. Modification or optimization is performed in a
step-wise fashion, where each step belongs to one of the following three categories:
(1) atom addition, (2) bond addition, and (3) bond removal. Because the molecule
generated depends solely on the molecule being changed and the modification made,
the optimization process can be formulated as a Markov decision process (MDP).
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Specifically, when performing the action atom addition, an empty set of atoms VT
for the target molecule graph is first defined. Then, a valid action is defined as adding
an atom in VT and also a bond between the added atom and the original molecule
wherever possible. When performing the action bond addition, a bond is added be-
tween two atoms in VT . If there is no existing bond between the two atoms, the
actions between them can consist of adding a single, double or triple bond. If there
is already a bond, this action changes the bond type by increasing the index of the
bond type by one or two. When performing the action bond removal, the valid bond
removal action set is defined as the actions that decrease the bond type index of an
existing bond. Possible transitions include: (1) Triple bond ! {Double, Single, No}
bond, (2) Double bond ! {Single, No} bond, and (3) Single bond ! {No} bond.

Based on the molecule modification MDP defined above, RL aims to find a policy
p that chooses an action for each state that maximizes future rewards. Then, the
decision is made by finding the action a for a state s to maximize the Q function:

Qp(s,a) = Qp(m, t,a) = Ep [
T

Â
n=t

rn], (12.24)

where rn is the reward at step n. The optimal policy can therefore be defined as
p⇤(s) = argmaxa Qp⇤

(s,a). A neural network is adopted to approximate Q(s,a,q),
and can be trained by minimizing the loss function:

l(q) = E[ fl(yt �Q(st ,at ;q))], (12.25)

where yt = rt +maxa Q(st+1,a;q) is the target value and fl is the Huber loss:

fl(x) =

(
1
2 x2 if |x| < 1
|x|� 1

2 otherwise
(12.26)

In a real-world setting, it is usually desirable for several different properties to be
optimized at the same time. Under the multi-objective RL setting, the environment
will return a vector of rewards at each step t with one reward for each objective. A
“scalar” reward framework is applied to achieve multi-objective optimization, with
the introduction of a user defined weight vector w = [w1,w2, ...,wk]> 2 Rk. The
reward is calculated as:

rs,t = w>�!rt =
k

Â
i=1

wiri,t . (12.27)

The objective of MDP is to maximize the cumulative scalarized reward.
The Q-learning model (Mnih et al, 2015) is implemented here, incorporating the

improvements gained using double Q-learning (Van Hasselt et al, 2016), with a deep
neural network being used to approximate the Q-function. The input molecule is
converted to a vector, by taking the form of a Morgan fingerprint (Rogers and Hahn,
2010) with the radius of 3 and length of 2048. The number of steps remaining in
the episode is concatenated to the vector and a four-layer fully-connected network
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with hidden state size of [1024, 512, 128, 32] and ReLU activation is used as the
architecture.

12.4.2.3 Node-Edge Co-evolving Deep Graph Translator

To overcome a number of challenges including, but not limited to, the mutually
dependent translation of the node and edge attributes, asynchronous and iterative
changes in the node and edge attributes during graph translation, and the difficulty of
discovering and enforcing the correct consistency between node attributes and graph
spectra, the Node-Edge Co-evolving Deep Graph Translator (NEC-DGT) has been
developed to achieve so-called multi-attributed graph translation and proven to be a
generalization of the existing topology translation models (Guo et al, 2019c). This is
a node-edge co-evolving deep graph translator that edits the source graph iteratively
through a generation process similar to the MPNN-based adjacency-based one-shot
method for unconditional deep graph generation, with the main difference being
that it takes the graph in the source domain as input rather than the initialized graph
(Guo et al, 2019c).

NEC-DGT employs a multi-block translation architecture to learn the distribu-
tion of the graphs in the target domain, conditioning on the input graphs and con-
textual information. Specifically, the inputs are the node and graph attributes, and
the model outputs are the generated graphs’ node and edge attributes after several
blocks. A skip-connection architecture is implemented across the different blocks to
handle the asynchronous properties of different blocks, ensuring the final translated
results fully utilize various combinations of blocks’ information. The following loss
function is minimized in the work:

LT = L (T (G (E0,F0),C),G (E 0,F 0)), (12.28)

where C corresponds to the contextual information vector, E0, E 0 corresponds to
the edge attribute tensors of the input and target graphs, respectively, and F0, F 0

corresponds to the node attribute tensors of the input and target graphs, respectively.
To jointly handle the various interactions among the nodes and edges, the re-

spective translation paths are considered for each block. For example, in the node
translation path, edges-to-nodes and nodes-to-nodes interactions are considered in
the generation of node attributes. Similarly, ”node to edges” and ”edges-to-edges”
are considered in the generation of edge attributes.

The frequency domain properties of the graph are learned, by which the inter-
actions between node and edge attributes are jointly regularized utilizing a non-
parametric graph Laplacian. Also, shared patterns among the generated nodes and
edges in different blocks are enforced through regularization. Then, the regulariza-
tion term is

R(G (E,F)) =
S

Â
s=0

Rq (G (ES,FS))+Rq , (12.29)
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where S corresponds to the number of blocks and q refers to the overall parameters
in the spectral graph regularization. G (ES,FS) is the generated target graph, where
ES is the generated edge attributes tensor and FS is the node attributes matrix. Then
the total loss function is

L̃ = L (T (G (E0,F0),C),G (E 0,F 0))+bR(G(E,F)). (12.30)

The model is trained by minimizing the MSE of ES with E 0, FS with F 0, enforced
by the regularization. T (·) is the mapping from the input graph to the target graph
learned from the multi-attributed graph translation.

The transformation process is modeled by several stages with each stage gen-
erating an immediate graph. Specifically, for each stage t, there are two options:
node translation paths and edge translation paths. In the node translation path, an
MLP-based influence-function is used to calculate the influence I(t)

i on each node
vi from its neighboring nodes. Another MLP-based updating-function is used to up-
date the node attribute as F(t)

i with the input of influence I(t)
i . The edge translation

path is constructed in the same way as the node translation path, with each edge
being generated by the influence from its adjacent edges.

12.5 Other Graph-based Transformations

12.5.1 Sequence-to-Graph Transformation

A deep sequence-to-graph transformation aims to generate a target graph GT condi-
tioned on an input sequence X . This problem is often seen in domains such as NLP
(Chen et al, 2018a; Wang et al, 2018g) and time series mining (Liu et al, 2015; Yang
et al, 2020c).

Existing methods (Chen et al, 2018a; Wang et al, 2018g) handle the seman-
tic parsing task by transforming a sequence-to-graph problem into a sequence-to-
sequence problem and utilizing the classical RNN-based encoder-decoder model
to learn this mapping. A neural semantic parsing approach, named Sequence-to-
Action, models semantic parsing as an end-to-end semantic graph generation pro-
cess (Chen et al, 2018a). Given a sentence X = {x1, ...,xm}, the Sequence-to-Action
model generate a sequence of actions Y = {y1, ..,ym} when constructing the cor-
rect semantic graph. A semantic graph consists of nodes (including variables, enti-
ties, and types) and edges (semantic relationships), with universal operations (e.g.,
argmax, argmin, count, sum, and not). To generate a semantic graph, six types of ac-
tions are defined: Add Variable Node, Add Entity Node, Add Type Node, Add Edge,
Operation Function and Argument Action. In this way, the generated parse tree is
represented as a sequence, and the sequence-to-graph problem is transformed into
a sequence-to-sequence problem. The attention-based sequence-to-sequence RNN
model with an encoder and decoder can be utilized, where the encoder converts the
input sequence X to a sequence of context sensitive vectors {b1, ...,bm} using a bidi-
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rectional RNN and a classical attention-based decoder generates action sequence Y
based on the context sensitive vectors (Bahdanau et al, 2015). The generation of a
parse tree as a sequence of actions is represented (Wang et al, 2018g) and concepts
from the Stack-LSTM neural parsing model are borrowed, producing two non-trivial
improvements, Bi-LSTM subtraction and incremental tree-LSTM, that improve the
process of learning a sequence-to-sequence mapping (Dyer et al, 2015).

Other methods have also been developed to handle the problem of Time Series
Conditional Graph Generation (Liu et al, 2015; Yang et al, 2020c): given an input
multivariate time series, the aim is to infer a target relation graph to model the under-
lying interrelationship between the time series and each node. A novel model of time
series conditioned graph generation-generative adversarial networks (TSGG-GAN)
for time series conditioned graph generation has been proposed that explores the
use of GANs in a conditional setting (Yang et al, 2020c). Specifically, the generator
in a TSGG-GAN adopts a variant of recurrent neural networks known as simple re-
current units (SRU) (Lei et al, 2017b) to extract essential information from the time
series, and uses an MLP to generate the directed weighted graph.

12.5.2 Graph-to-Sequence Transformation

A number of graph-to-sequence encoder-decoder models have been proposed to
handle rich and complex data structures, which are hard for sequence-to-sequence
methods to handle (Gao et al, 2019c; Bastings et al, 2017; Beck et al, 2018; Song
et al, 2018; Xu et al, 2018c). A graph-to-sequence model typically employs a graph-
neural-network-based (GNN-based) encoder and an RNN/Transformer-based de-
coder, with most being designed to tackle tasks such as natural language genera-
tion (NLG), which is an important task in NLP (YILMAZ et al, 2020). Graph-to-
sequence models have the ability to capture the rich structural information of the
input and can also be applied to arbitrary graph-structured data.

Early graph-to-sequence methods and their follow-up works (Bastings et al,
2017; Damonte and Cohen, 2019; Guo et al, 2019e; Marcheggiani et al, 2018; Xu
et al, 2020b,d; Zhang et al, 2020d,c) have mainly used a graph convolutional net-
work (GCN) (Kipf and Welling, 2017b) as the graph encoder, probably because
GCN was the first widely used GNN model that sparked this new wave of research
on GNNs and their applications. Early GNN variants, such as GCN, were not orig-
inally designed to encode information on the edge type and so cannot be directly
applied to the encoding of multi-relational graphs in NLP. Later on, more graph
transformer models (Cai and Lam, 2020; Jin and Gildea, 2020; Koncel-Kedziorski
et al, 2019) were introduced to the graph-to-sequence architecture to handle these
multi-relational graphs. These graph transformer models generally function by ei-
ther replacing the self-attention network in the original transformer with a masked
self-attention network, or explicitly incorporating edge embeddings into the self-
attention network.
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Because edge direction in an NLP graph often encodes critical information re-
garding semantic meanings, capturing bidirectional information in the text is helpful
and has been widely explored in works such as BiLSTM and BERT (Devlin et al,
2019). Some attention has also been devoted to extending the existing GNN models
to handle directed graphs. For example, separate model parameters can be intro-
duced for different edge directions (e.g., incoming/outgoing/self-loop edges) when
conducting neighborhood aggregation (Guo et al, 2019e; Marcheggiani et al, 2018;
Song et al, 2018). A BiLSTM-like strategy has also been proposed to learn the node
embeddings of each direction independently using two separate GNN encoders and
then concatenating the two embeddings for each node to obtain the final node em-
beddings (Xu et al, 2018b,c,d).

In the field of NLP, graphs are usually multi-relational, where the edge type in-
formation is vital for the prediction. Similar to the bidirectional graph encoder in-
troduced above, separate model parameters for different edge types are considered
when encoding edge type information with GNNs (Chen et al, 2018e; Ghosal et al,
2020; Schlichtkrull et al, 2018). However, usually the total number of edge types
is large, leading to non-negligible scalability issues for the above strategies. This
problem can be tackled by converting a multi-relational graph to a Levi graph (Levi,
1942), which is bipartite. To create a Levi graph, all the edges in the original graph
are treated as new nodes and new edges are added to connect the original nodes and
new nodes.

Apart from NLP, graph-to-sequence transformation has been employed in other
fields, for example when modeling complex transitions of an individual user’s ac-
tivities among different healthcare subforums over time and learning how this is
related to his various health conditions (Gao et al, 2019c). By formulating the tran-
sition of user activities as a dynamic graph with multi-attributed nodes, the health
stage inference is formalized as a dynamic graph-to-sequence learning problem and,
hence, a dynamic graph-to-sequence neural network architecture (DynGraph2Seq)
has been proposed (Gao et al, 2019c). This model contains a dynamic graph en-
coder and an interpretable sequence decoder. In the same work, a dynamic graph
hierarchical attention mechanism capable of capturing entire both time-level and
node-level attention is also proposed, providing model transparency throughout the
whole inference process.

12.5.3 Context-to-Graph Transformation

Deep graph generation conditioning on semantic context aims to generate the target
graph GT conditioning on an input semantic context that is usually represented in
the form of additional meta-features. The semantic context can refer to the category,
label, modality, or any additional information that can be intuitively represented as
a vector C. The main issue here is to decide where to concatenate or embed the con-
dition representation into the generation process. As a summary, the conditioning
information can be added in terms of one or more of the following modules: (1)
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the node state initialization module, (2) the message passing process for MPNN-
based decoding, and (3) the conditional distribution parameterization for sequential
generating.

A novel unified model of graph variational generative adversarial nets has been
proposed, where the conditioning semantic context is input into the node state ini-
tialization module (Yang et al, 2019a). Specifically, the generation process begins
by modeling the embedding Zi of each node with the separate latent distributions,
after which a conditional graph VAE (CGVAE) can be directly constructed by con-
catenating the condition vector C to each node’s latent representation Zi to obtain
the updated node latent representation Ẑi. Thus, the distribution of the individual
edge Ei, j is assumed to be a Bernoulli distribution, which is parameterized by the
value Êi, j and calculated as Êi, j = Sigmoid( f (Ẑi)> f (Ẑ j)), where f (·) is constructed
using a few fully connected layers. A conditional deep graph generative model that
adds the semantic context information into the initialized latent representations Zi
at the beginning of the decoding process has also been proposed (Li et al, 2018d).

Other researchers have added the context information C into the message passing
module as part of its MPNN-based decoding process (Li et al, 2018f). Specifically,
the decoding process is parameterized as a Markov process and the graph is gen-
erated by iteratively refining and updating the initialized graph. At each step t, an
action is conducted based on the current node’s hidden states Ht = {ht

1, ...,ht
N}. To

calculate ht
i 2 Rl (l denotes the length of the representation) for node vi in the in-

termediate graph Gt after each updating of the graph, a message passing network
is utilized with node message propagation. Thus, the context information C 2 Rk is
added to the operation of the MPNN layer as follows:

ht
i = Wht�1

i +F Âv j2N(v j)
ht�1

j +QC, (12.31)

where W 2 Rl⇥l , Q 2 Rl⇥l and F 2 Rk⇥l are all learnable weights vectors and k
denotes the length of the semantic context vector.

Semantic context has also been considered as one of the inputs for calculating the
conditional distribution parameter at each step during the sequential generating pro-
cess (Jonas, 2019). The aim here is to solve the molecule inverse problem by infer-
ring the chemical structure conditioning on the formula and spectra of a molecule,
which provides a distinguishable fingerprint of its bond structure. The problem is
framed as an MDP and molecules are constructed incrementally one bond at a time
based on a deep neural network, where they learn to imitate a “subisomorphic or-
acle” that knows whether the generated bonds are correct. The context information
(e.g., spectra) is applied in two places. The process begins with an empty edge set
E0 that is sequentially updated to Ek at each step k by adding an edge sampled
from p(ei, j|Ek�1,V ,C). V denotes the node set that is defined in the given molec-
ular formula. The edge set keeps updating until the existing edges satisfy all the
valence constraints of a molecule. The resulting edge set EK then serves as the can-
didate graph. For a given spectrum C, the process is repeated T times, generating
T (potentially different) candidate structures, {E (i)

K }T
i=1. Then based on a spectral

prediction function f (·), the quality of these candidate structures are evaluated by
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measuring how close their predicted spectra are to the condition spectrum C. Finally,
the optimal generated graph is selected according to argmin

i
k f (E (i)

K )�C k2.

12.6 Summary

In this chapter, we introduce the definitions and techniques for the transforma-
tion problem that involves graphs in the domain of deep graph neural networks.
We provide a formal definition of the general deep graph transformation prob-
lem as well as its four sub-problems, namely node-level transformation, edge-level
transformation,node-edge co-transformation, as well as other graph-involved trans-
formations (e.g., sequence-to-graph transformation and context-to-graph transfor-
mation). For each sub-problem, its unique challenges and several representative
methods are introduced. As an emerging research domain, there are still many
open problems to be solved for future exploration, including but not limited to:
(1) Improved scalability. Existing deep graph transformation models typically have
super-linear time complexity to the number of nodes and cannot scale well to large
networks. Consequentially, most existing works merely focus on small graphs, typi-
cally with dozens to thousands of nodes. It is difficult for them to handle many real-
world networks with millions to billions of nodes, such as the internet of things,
biological neuronal networks, and social networks. (2) Applications in NLP. As
more and more GNN-based works have advanced the development of NLP, graph
transformation is naturally a good fit for addressing some NLP tasks, such as in-
formation extraction and semantic parsing. For example, information extraction can
be formalized into a graph-to-graph problem where the input graph is the depen-
dency graph and the output graph is the information graph. (3) Explainable graph
transformation. When we learn the underlying distribution of the generated target
graphs, learning interpretable representations of graph that expose semantic mean-
ing is very important. For example, it is highly beneficial if we could identify which
latent variable(s) control(s) which specific properties (e.g., molecule mass) of the
target graphs (e.g., molecules). Thus, investigations on the explainable graph trans-
formation process are critical yet unexplored.

Editor’s Notes: Graph transformation is deemed very relevant to graph gen-
eration (see Chapter 11) and can be considered as an extension of the latter.
In many real-world applications, one is usually required to generate graphs
with some condition or control from the users. For example, one may want
to generate molecules under some targeted properties (see Chapters 24 and
25) or programs under some function (see Chapter 22). In addition, graph-
to-graph transformation also has a connection to link prediction (Chapter
10) and node classification (Chapter 4), though the former could be more
challenging since it typically requires simultaneous node-edge prediction,
and possibly also comes with the consideration of stochasticity.


