
Chapter 11
Graph Neural Networks: Graph Generation

Renjie Liao

Abstract In this chapter, we first review a few classic probabilistic models for graph
generation including the Erdős–Rényi model and the stochastic block model. Then
we introduce several representative modern graph generative models that lever-
age deep learning techniques like graph neural networks, variational auto-encoders,
deep auto-regressive models, and generative adversarial networks. At last, we con-
clude the chapter with a discussion on potential future directions.

11.1 Introduction

The study of graph generation revolves around building probabilistic models over
graphs which are also called networks in many scientific disciplines. This problem
has its roots in a branch of mathematics, called random graph theory (Bollobás,
2013), which largely lies at the intersection between the probability theory and the
graph theory. It is also at the core of a new academic field, called network sci-
ence (Barabási, 2013). Historically, researchers in these fields are often interested in
building random graph models (i.e., constructing distributions of graphs using cer-
tain parametric families of distributions) and proving the mathematical properties
of such models. Albeit being an extremely fruitful and successful research direction
that spawns numerous outcomes, these classic models suffer from being too sim-
plistic to capture the complex phenomenon (e.g., highly-clustered, well-connected,
scale-free) that appeared in the real-world graphs.

With the advent of powerful deep learning techniques like graph neural net-
works, we can build more expressive probabilistic models of graphs, i.e., the so-
called deep graph generative models. Such deep models can better capture the com-
plex dependencies within the graph data to generate more realistic graphs and fur-
ther build accurate predictive models. However, the downside is that these models
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are often so complicated that we can rarely analyze their properties in a precise
manner. The recent practices of these models have demonstrated impressive per-
formances in modeling real-world graphs/networks, e.g., social networks, citation
networks, and molecule graphs.

In the following, we first introduce the classic graph generative models in Section
11.2 and then the modern ones that leverage the deep learning techniques in Section
11.3. At last, we conclude the chapter and discuss some promising future directions.

11.2 Classic Graph Generative Models

In this section, we review two popular variants of the classic graph generative mod-
els: the Erdős–Rényi model (Erdős and Rényi, 1960) and the stochastic block model
(Holland et al, 1983). They are often used as handy baselines in many applications
since we have already gained deep understandings of their properties. There are
many other graph generative models like the Watts–Strogatz small-world model
(Watts and Strogatz, 1998) and the Barabási–Albert (BA) preferential attachment
model (Barabási and Albert, 1999). Barabási (2013) provides a thorough survey
on these models and other aspects of network science. In the context of machine
learning, there are also quite a few non-deep-learning graph generative models like
Kronecker graphs (Leskovec et al, 2010). We do not cover these models due to the
space limit.

11.2.1 Erdős–Rényi Model

We first explain one of the most well known random graph models, i.e., Erdős–Rényi
model (Erdős and Rényi, 1960), named after two Hungarian mathematicians Paul
Erdős and Alfréd Rényi. Note that this model has been independently proposed at
around the same time by Edgar Gilbert in (Gilbert, 1959). In the following, we first
describe the model along with its properties and then discuss its limitations.

11.2.1.1 Model

The Erdős–Rényi model has two closely variants, namely, G(n, p) and G(n,m).
G(n,p) Model In the G(n, p) model, we are given n labeled nodes and generate

a graph by randomly connecting an edge linking one node to the other with the
probability p, independently from every other edge. In other words, all

�n
2
�

possible
edges have the equal probability p to be included. Therefore, the probability of
generating a graph with m edges under this model is as below,

p(a graph with n nodes and m edges) = pm(1� p)(
n
2)�m. (11.1)
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The parameter p controls the “density” of the graph, i.e., a larger value of p makes
the graph become more likely to contain more edges. When p = 1

2 , the above prob-

ability becomes 1
2
(n

2), i.e., all possible 2(n
2) graphs are chosen with equal probability.

Due to the independence of the edges in G(n, p), we can easily derive a few
properties from this model.

• The expected number of edges is
�n

2
�

p.
• The degree distribution of any node v is binomial:

p(degree(v) = k) =

✓
n
k

◆
pk(1� p)n�1�k (11.2)

• If N p is a constant and n ! •, the degree distribution of any node v is Poisson:

p(degree(v) = k) =
(np)ke�np

k!
(11.3)

There is an enormous number of more involved properties of this model that has
been proved (e.g., by Erdős and Rényi in the original paper). We list a few others as
below.

• If p > (1+e) lnn
n , then a graph will almost surely be connected.

• If p < (1+e) lnn
n , then a graph will almost surely contain isolated vertices, and

thus be disconnected.
• If N p < 1, then a graph will almost surely have no connected components of

size larger than O(log(n)).

Here almost surely means the probability of the event happens with probability 1
(i.e., the set of possible exceptions has zero measure).

G(n,m) Model In the G(n,m) model, we are given n labeled nodes and generate
a graph by uniformly randomly choosing a graph from the set of all graphs with n

nodes and m edges, i.e., the probability of choosing each graph is
�(n

2)
m
��1

. There are
also many important properties associated with the G(n,m) model. In particular, it
is interchangeable with the G(n, p) model provided that m is close to

�n
2
�

p in most
investigations. Chapter 2 of (Bollobás and Béla, 2001) provides a comprehensive
discussion on the relationship between these two models. The G(n, p) model is more
commonly used in practice than the G(n,m) model, partly due to the ease of analysis
brought by the independence of the edges.

11.2.1.2 Discussion

As a seminal work in the random graph theory, the Erdős–Rényi model inspires
much subsequent work to study and generalize this model. However, the assump-
tions of this model, e.g., edges are independent and each edge is equally likely to
be generated, are too strong to capture the properties of the real-world graphs. For
example, the degree distribution of the Erdős–Rényi model has an exponential tail
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which means we rarely see node degrees span a broad range, e.g., several orders
of magnitude. Meanwhile, real-world graphs/networks like the World Wide Web
(WWW) are believed to possess a degree distribution that follows a power law, i.e.,
p(d) µ d�g where d is the degree and the exponent g is typically between 2 and
3. Essentially, this means that there are many nodes that have small node degrees,
whereas there are a few nodes which have extremely large node degrees (, hubs) in
the real-world graphs like WWW. Therefore, many improved models like the scale-
free networks (Barabási and Albert, 1999) were later proposed, which fit better to
the degree distribution of the real-world graphs.

11.2.2 Stochastic Block Model

Stochastic block models (SBM) are a family of random graphs with clusters of nodes
and are often employed as a canonical model for tasks like community detection
and clustering. It is proposed independently in a few scientific communities, e.g.,
machine learning and statistics (Holland et al, 1983), theoretical computer science
(Bui et al, 1987), and mathematics (Bollobás et al, 2007). It is arguably the simplest
model of a graph with communities/clusters. As a generative model, SBM could
provide ground-truth cluster memberships, which in turn could help benchmark and
understand different clustering/community detection algorithms. In the following,
we first introduce the basics of the model and then discuss its advantages as well as
limitations.

11.2.2.1 Model

We start the introduction by denoting the total number of nodes as n and the number
of communities/clusters as k. A prior probability vector p over the k clusters and
a k ⇥ k matrix W with entries in [0,1] are also given. We generate a random graph
following the procedure below:

1. For each node, we generate its community label (an integer from {1, · · · ,k}) by
independently sampling from p.

2. For each pair of nodes, denoting their community labels as i and j, we generate
an edge by independently sampling with probability Wi, j.

Basically, the community assignments of a pair of nodes determine the specific en-
try of W to be used, which in turn indicates how likely we connect this pair of nodes.
We denote such a model as SBM(n,p,W ). Note that, if we set Wi, j = q for all com-
munities (i, j), then the corresponding SBM degenerates to the Erdős–Rényi model
G(n,q).

In the context of community detection, people are often interested in recovering
the community label given a random graph drawn from the SBM model. Denoting
the recovered and the ground-truth community labels as X 2 Rn⇥1 and Y 2 Rn⇥1,
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we can define the agreement R between two community labels as,

R(X ,Y ) = max
P2P

1
n

n

Â
i=1

1 [Xi = (PY )i] , (11.4)

where P is a permutation matrix and P is the set of all permutation matrices. Xi and
(PY )i are the i-th element of X and PY respectively. In short, the agreement consid-
ers the best possible reshuffle between two sequences of labels. Depending on the
requirement, we could examine the community detection algorithms in the sense
of exact recovery (i.e., cluster assignments are exactly recovered almost surely,
p(R(X ,Y ) = 1) = 1) or partial recovery (i.e., at most 1 � e fraction of nodes are
mislabeled almost surely, p(R(X ,Y ) � e) = 1). Researchers have established vari-
ous conditions under which a particular type of recovery is possible for SBM graphs.
For example, for SBMs with W = log(n)Q

n , where Q is a matrix with positive entries
and the same size as W , Abbe and Sandon (2015) shows that the exact recovery
is possible if and only if the minimum Chernoff-Hellinger divergence between any
two columns of diag(p)Q is no less than 1, where diag(p) is a diagonal matrix with
diagonal entries as p.

11.2.2.2 Discussion

Abbe (2017) provides an up-to-date and comprehensive survey on the SBM and
the fundamental limits (from both information-theoretic and computational per-
spectives) for community detection in the SBM. SBM is a more realistic random
graph model for describing graphs with community structures compared to the
Erdős–Rényi model. It also spawns many subsequent variants of block models like
the mixed membership SBM (Airoldi et al, 2008). However, the estimation of SBMs
on real-world graphs is hard since the number of communities is often unknown in
advance and some graphs may not exhibit clear community structures.

11.3 Deep Graph Generative Models

In this section, we review several representative deep graph generative models which
aim at building probabilistic models of graphs using deep neural networks. Based
on the type of deep learning techniques being used, we can roughly divide the cur-
rent literature into three categories: variational autoencoder (VAEs) (Kingma and
Welling, 2014) based methods, deep auto-regressive (Van Oord et al, 2016) meth-
ods, and generative adversarial networks (GANs) (Goodfellow et al, 2014b) based
methods. We introduce all three model classes in the subsequent sections.
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11.3.1 Representing Graphs

We first introduce how a graph is represented in the context of deep graph generative
models. Suppose we are given a graph G = (V ,E ) where V is the set of nodes/ver-
tices and E is the set of edges. Conditioning on a specific node ordering p , we can
represent the graph G as an adjacency matrix Ap where Ap 2R|V |⇥|V |, where |V | is
the size of set V (i.e., the number of nodes). The adjacency matrix not only provides
a convenient representation of graphs on computers but also offers a natural way
to mathematically define a probability distribution over graphs. Here we explicitly
write the node ordering p in the subscript to emphasize that the rows and columns
of A are arranged according to the p . If we change the node ordering from p to p 0,
the adjacency matrix will be permuted (shuffling rows and columns) accordingly,
i.e., Ap 0 = PAp P>, where the permutation matrix P is constructed based on the pair
of node orderings (p,p 0). In other words, Ap and Ap 0 represent the same graph G .
Therefore, a graph G with an adjacency matrix Ap can be equivalently represented
as a set of adjacency matrices {PAp P>|P 2 P} where P is the set of all permutation
matrices with size |V |⇥ |V |. Note that, depending on the symmetric structures of
Ap , there may exist two permutation matrices P1,P2 2 P so that P1Ap P>

1 = P2Ap P>
2 .

Therefore, we remove such redundancies and keep those uniquely permutated ad-
jacency matrices, denoted as A = {PAp P>|P 2 PG }. More precisely, PG is the
maximal subset of P so that P1Ap P>

1 6= P2Ap P>
2 holds for any P1,P2 2 PG . We

add the subscript G to emphasize that PG depends on the given graph G . Note that
there exists a surjective mapping between P and PG . For the ease of notations, we
will drop the subscript of the node ordering and use G ⌘ A = {PAP>|P 2 PG } to
represent a graph from now on.

When considering the node features/attributes X , we can denote the graph struc-
tured data as G ⌘ {(PAP>,PX)|P 2 PG }1. Note that the rows of X are shuffled
according to P since each row of X corresponds to a node. In our context, we can
assume the maximum number of nodes of all graphs is n. If a graph has fewer nodes
than n, we can add dummy nodes (e.g., with all-zero features) which are isolated to
other nodes to make the size equal n. Therefore, X 2 Rn⇥dX and A 2 Rn⇥n where
dX is the feature dimension. To simplify the explanation, we do not include the
edge feature. But it is straightforward to modify the following models accordingly
to incorporate edge features.

11.3.2 Variational Auto-Encoder Methods

Due to the great success of VAEs in image generation (Kingma and Welling, 2014;
Rezende et al, 2014), it is natural to extend this framework to graph generation. This

1 Technically, there may exist two permutation matrices P1,P2 2 P so that P1AP>
1 = P2AP>

2 and
P1X 6= P2X . It thus seems to be necessary to define G ⌘ {(PAP>,PX)|P 2 P}. However, as seen
later, we are always interested in distributions of node features that are exchangeable over nodes,
i.e., p(P1X) = p(P2X). Therefore, restricting ourselves to PG is sufficient for our exposition.
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idea has been explored from different aspects (Kipf and Welling, 2016; Jin et al,
2018a; Simonovsky and Komodakis, 2018; Liu et al, 2018d; Ma et al, 2018; Grover
et al, 2019; Liu et al, 2019b) and is often collectively named as GraphVAE. In the
following, we first highlight the common framework shared by all these methods
and then discuss some important variants.

11.3.2.1 The GraphVAE Family

Similar to vanilla VAEs, every model instance within the GraphVAE family con-
sists of an encoder (i.e., a variational distribution qf (Z|A,X) parameterized by f ),
a decoder (i.e., a conditional distribution pq (G |Z) parameterized by q ), and a prior
distribution (i.e., a distribution p(Z) typically with fixed parameters). Before intro-
ducing individual components, we first describe what the latent variables Z are. In
the context of graph generation, we typically assume that each node is associated
with a latent vector. Denoting the latent vector of the i-th node as zi, then Z 2Rn⇥dZ

is obtained by stacking {zi} as row vectors. Such latent vectors should summarize
the information of the local subgraphs associated with individual nodes so that we
can decode/generate edges based on them. In other words, any pair of latent vec-
tors (zi,z j) is supposed to be informative to determine whether nodes (i, j) should
be connected. We could further introduce edge latent variables {zi j} to enrich the
model. Again, we do not consider such an option for simplicity since the underlying
modeling technique is roughly the same.

Encoder We first explain how to construct the encoder using a deep neural net-
work. Recall that the input to the encoder is the graph data (A,X). The natural can-
didate to deal with such data is a graph neural network, e.g., a graph convolutional
network (GCN) (Kipf and Welling, 2017b). For example, let us consider a two-layer
GCN as below,

H = Ãs(ÃXW1)W2, (11.5)

where H 2 Rn⇥dH are the node representations (each node is associated with a size-
dH row vector). Ã = D� 1

2 (A+ I)D� 1
2 where D is the degree matrix (i.e., a diagonal

matrix of which the entries are the row sum of A + I). I is the identity matrix. s is
the nonlinearity which is often chosen to be the rectified linear unit (ReLU) (Nair
and Hinton, 2010). {W1,W2} are the learnable parameters. We can pad a constant to
the input feature dimension so that the bias term is absorbed into the weight matrix.
We adopt this convention for ease of notation.

Relying on the learned node representations H, we can construct the variational
distribution as below,
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qf (Z|A,X) =
n

’
i=1

q(zi|A,X) (11.6)

q(zi|A,X) = N (µi,�iI) (11.7)
µ = MLPµ(H) (11.8)

log� = MLP�(H). (11.9)

Here we typically assume that the variational distribution q(Z|A,X) is conditionally
node-wise independent for the tractability consideration. µi and �i are the i-th rows
of µ and � respectively. The learnable parameters f consist of all parameters of
the two multi-layer perceptrons (MLPs) and the above GCN. Although the approx-
imated variational distribution defined in Eq. (11.6) is simple, it possesses a few
great properties. First, the probability distribution is invariant w.r.t. the permutation
of nodes. Mathematically, it means that given two different permutation matrices
P1,P2 2 P , we have

q(P1Z|P1AP>
1 ,P1X) = q(P2Z|P2AP>

2 ,P2X) (11.10)

This can be easily verified from the exchangeability of the product of probabilities
and the equivariance property of graph neural networks. Second, the neural net-
works underlying each Gaussian (i.e., “GNN + MLP”) are very powerful so that the
conditional distributions are expressive in capturing the uncertainty of latent vari-
ables. Third, this encoder is computationally cheaper than those which consider the
dependencies among different {zi} (e.g., an autoregressive encoder). It thus pro-
vides a solid baseline for investigating whether a more powerful encoder is needed
in a given problem.

Prior Similar to most VAEs, GraphVAEs often adopt a prior that is fixed during
the learning. For example, a common choice is an node-independent Gaussian as
below,

p(Z) =
n

’
i=1

p(zi) (11.11)

p(zi) = N (0, I). (11.12)

Again, we could replace this fixed prior with more powerful ones like an autoregres-
sive model at the cost of more computation and/or a time-consuming pre-training
stage. But this prior serves as a good starting point to benchmark more complicated
alternatives, e.g., the normalizing flow based one in (Liu et al, 2019b).

Decoder The aim of a decoder in graph generative models is to construct a prob-
ability distribution over the graph and its feature/attributes conditioned on the latent
variables, i.e., p(G |Z). However, as we discussed previously, we need to consider all
possible node orderings (each corresponds to a permuted adjacency matrix) which
leaves the graph unchanged, i.e.,

p(G |Z) = Â
P2PG

p(PAP>,PX |Z). (11.13)
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Recall that PG is the maximal subset of the set of all possible permutation matrices
P so that P1Ap P>

1 6= P2Ap P>
2 holds for any P1,P2 2 PG . To build such a decoder,

we first construct a probability distribution over adjacency matrix and node feature
matrix. For example, we show a popular and simple construction (Kipf and Welling,
2016) as below,

p(A,X |Z) = ’
i, j

p(Ai j|Z)
n

’
i=1

p(xi|Z) (11.14)

p(Ai j|Z) = Bernoulli(Qi j) (11.15)
p(xi|Z) = N (µ̃i, �̃i) (11.16)

Qi j = MLPQ ([zikz j]) (11.17)
µ̃i = MLPµ̃(zi) (11.18)
�̃i = MLP�̃(zi), (11.19)

where we adopt an edge-independent Bernoulli distribution over edges and node-
wise independent Gaussian distribution over node features. [zikz j] means concate-
nating zi and z j. xi is the i-th row of node feature matrix X . The first product term
in Eq. (11.14) sums over all n2 possible edges. The learnable parameters consist of
those of three MLPs. This decoder is simple yet powerful. However, given the latent
variables Z, the decoder is not permutation invariant in general, i.e., for any two
different permutation matrices P1 and P2,

p(P1AP>
1 ,P1X |Z) 6= p(P2AP>

2 ,P2X |Z). (11.20)

Note that there are corner cases so that p(P1AP>
1 ,P1X |Z) = p(P2AP>

2 ,P2X |Z) holds.
For example, if an adjacency matrix A has certain symmetries, there could exist
a pair of (P1,P2) so that P1AP>

1 = P2AP>
2 . But this does not hold for all pairs of

(P1,P2). As a second example, if all Qi j are the same for all (i, j), all µ̃i are the
same for all i, and all �̃i are the same for all i, then for any two permutation ma-
trices (P1,P2), we have p(P1AP>

1 ,P1X |Z) = p(P2AP>
2 ,P2X |Z). Nevertheless, these

two cases happen rarely in practice.
Equipped with the distribution in Eq. (11.14), we can evaluate the terms on the

right hand side of Eq. (11.13). However, the number of permutation matrices in PG

can be as large as n! which makes the exact evaluation computationally prohibitive.
There are a few ways in the literature to approximate it. For example, we can just
use the maximum term as below,

p(G |Z) = Â
P2PG

p(PAP>,PX |Z) ⇡ max
P2PG

p(PAP>,PX |Z). (11.21)

Unfortunately, this maximization problem can be interpreted as an integer quadratic
programming which is itself a hard optimization problem. To approximately solve
the matching problem, Simonovsky and Komodakis (2018) exploit a relaxed max-
pooling matching solver (Cho et al, 2014b). On the other hand, there are some
canonical node orderings in certain applications. For example, the simplified molecular-
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input line-entry system (SMILES) string (Weininger, 1988) provides a sequential
ordering of atoms (nodes) of molecule graphs in chemistry. Based on the canoni-
cal node ordering, we can construct the corresponding permutation P̃ and simply
approximate the conditional probability as,

p(G |Z) = Â
P2PG

p(PAP>,PX |Z) ⇡ p(P̃AP̃>, P̃X |Z). (11.22)

Objective The training objective of GraphVAE is similar to regular VAEs, i.e.,
the evidence lower bound (ELBO),

max
q ,f

Eqf (Z|A,X) [log pq (G |Z)]�KL(qf (Z|A,X)kp(Z)) (11.23)

To learn the encoder and the decoder, we need to sample from the encoder to ap-
proximate the expectation in Eq. (11.23) and leverage the reparameterization trick
(Kingma and Welling, 2014) to back-propagate the gradient.

11.3.2.2 Hierarchical and Constrained GraphVAEs

There are many variants derived from the GraphVAE family mentioned above. We
now briefly introduce two important types of variants, i.e., hierarchical GraphVAE
(Jin et al, 2018a) and Constrained GraphVAE (Liu et al, 2018d; Ma et al, 2018).

Hierarchical GraphVAEs One representative work of hierarchical GraphVAEs
is Junction Tree VAEs (Jin et al, 2018a) which aim at modeling the molecule graphs.
The key idea is to build a GraphVAE relying on the hierarchical graph represen-
tations of molecules. In particular, we first apply the tree decomposition to obtain
a junction tree T from the original molecule graph G . A junction tree is a cluster
tree (each node is a set of one or more variables of the original graph) with the run-
ning intersection property (Barber, 2004). It provides a coarsened representation of
the original graph since one node in a junction tree may correspond to a subgraph
with several nodes in the original graph. As shown in Figure 11.1, there are two
graphs corresponding to two levels, i.e., the original molecule graph G (1st level)
and the decomposed junction tree T (2nd level). Since we can efficiently perform
tree decomposition to obtain the junction tree, the tree itself is not a latent variable.
Jin et al (2018a) propose to use Gated Graph Neural Networks (GGNNs) (Li et al,
2016b) as encoders (one for each level) and construct variational posteriors q(ZG |G )
and q(ZT |T ) as Gaussians. To decode the molecule graph, we need to perform a
two-level generation process conditioned on the sampled latent variables ZT and
ZG . A junction tree is first generated by a autoregressive decoder which is again
based on GGNNs. Conditioned on the generated tree, Jin et al (2018a) resort to
maximum-a-posterior (MAP) formulation to generate the final molecule graph, i.e.,
finding the compatible subgraphs at each node of the tree so that the overall score
(log-likelihood) of the resultant graph (i.e., replacing each node in the tree with the
chosen subgraph) is maximized. The whole model can be learned similarly to other
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Fig. 11.1: Junction Tree VAEs. The junction tree corresponding to the molecule
graph is obtained via the tree decomposition as shown in the top-right. A node/clus-
ter in the junction tree (color-shaded) may correspond to a subgraph in the original
molecule graph. Two GNN-based encoders are applied to the molecular graph and
junction tree respectively to construct the variational posterior distributions over
latent variables ZG and ZT . During the generation, we first generate the junction
tree using an autoregressive decoder and then obtains the final molecule graph via
approximately solving a maximum-a-posterior problem. Adapted from Figure 3 of
(Jin et al, 2018a).

GraphVAEs. This model provides an interesting extension of GraphVAEs to hier-
archical graph generation and demonstrates strong empirical performances. There
are other important application-dependent details which greatly improve efficiency.
For example, we can build a dictionary of chemically valid subgraphs so that each
generation step in the 2nd level decoding generates a subgraph rather than a single
node. Nevertheless, the model design largely relies on the efficiency of the chosen
junction tree algorithm and certain application-dependent properties. It is unclear
how well this model performs on general graphs other than molecules.
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Constrained GraphVAEs In many applications of deep graph generative mod-
els, certain constraints on the generated graphs are preferred. For example, while
generating molecule graphs, the configuration of chemical bonds (edges) must meet
the valence criteria of the atoms (nodes). How to ensure the generated graphs sat-
isfy such constraints is a challenging problem. There are generally two types of
approaches to overcome it in the context of GraphVAEs. The first type is to design
a decoder so that all generated graphs satisfy the constraints by construction. For
example, an autoregressive decoder is often adopted as in (Liu et al, 2018d; Dai
et al, 2018b). At each step, conditioned on the currently generated graph, the model
generates a new node, a new edge, and the node/edge attributes following certain
rules, i.e., ruling out invalid options (those would violate the constraints) like what
GrammarVAEs (Kusner et al, 2017) do. The other type of approach is to treat the
constraints softly. Similar to how constrained optimization problems are converted
to unconstrained ones by adding Lagrangians, Ma et al (2018) propose Lagrangian-
based regularizers to incorporate constraints like valence constraint for molecule
graphs, connectivity constraint, and node compatibility. The benefits of such meth-
ods are that the generation could be much simpler and more efficient since we do not
need a slow autoregressive decoder. Also, the regularization is only applied during
learning and does not bring any overhead in the generation. Of course, the downside
is that the generated graph my not exactly satisfy all constraints since the regular-
ization only acts softly in the optimization.

11.3.3 Deep Autoregressive Methods

Deep autoregressive models like PixelRNNs (Van Oord et al, 2016) and PixelCNNs
(Oord et al, 2016) have achieved tremendous successes in image modeling. There-
fore, it is natural to generalize this type of method to graphs. The shared underlying
idea of these autoregressive models is to characterize the graph generation process
as a sequential decision-making process and make a new decision at each step con-
ditioning on all previously made decisions. For example, as shown in Figure 11.2,
we can first decide whether to add a new node, then decide whether to add a new
edge, so on and so forth. If node/edge labels are considered, we can further sample
from a categorical distribution at each step to specify such labels. The key question
of this class of methods is how to build a probabilistic model so that our current
decision depends on all previous historical choices.

11.3.3.1 GNN-based Autoregressive Model

The first GNN-based autoregressive model was proposed in (Li et al, 2018d) of
which the high-level idea is exactly the same as shown in Figure 11.2. Sup-
pose at time step t � 1, we already generated a partial graph denoted as G t�1 =
(V t�1,E t�1). The corresponding adjacency matrix and node feature matrix are de-
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Fig. 11.2: The overview of the deep graph generative model in (Li et al, 2018d).
The graph generation is formulated as a sequential decision-making process. At
each step of the generation, the model needs to decide: 1) whether add a new node
or stop the whole generation; 2) whether add a new edge (one end connected to the
new node) or not; 3) which existing node to connect for the new edge. Adapted from
Figure 1 of (Li et al, 2018d).

noted as (At�1,Xt�1). At time step t, the model needs to decide: 1) whether we
add a new node or we stop the generation (denoting the probability as pAddNode);
2) whether we add an edge that links any existing node to the newly added node
(denoting the probability as pAddEdge); 3) choose a existing node to link to the newly
added node (denoting the probability as pNodes). For simplicity, we define pAddNode
to be a Bernoulli distribution. We can extend it to a categorical one if node labels/-
types are considered. pAddEdge is yet another Bernoulli distribution whereas pNodes is
a categorical distribution with size |V t�1| (i.e., its size will change as the generation
goes on).

Message Passing Graph Neural Networks To construct the above probabilities
of decisions, we first build a message passing graph neural network (Scarselli et al,
2008; Li et al, 2016b; Gilmer et al, 2017) to learn node representations. The input
to the GNN at time step t �1 is (At�1,Ht�1) where Ht�1 is the node representation
(one row corresponds to a node). Note that at time 0, since the graph is empty, we
need to generate a new node to start. The generation probability pAddNode will be
output by the model based on some randomly initialized hidden state. If we model
the node labels/types or node features, we can also use them as additional node
representations, e.g., concatenating them with rows of Ht�1.

The one-step message passing is shown as below,

mi j = fMsg(ht�1
i ,ht�1

j ) 8(i, j) 2 E (11.24)

m̄i = fAgg({mi j|8 j 2 Wi}) 8i 2 V (11.25)

h̃t�1
i = fUpdate(ht�1

i ,m̄i) 8i 2 V , (11.26)

where fMsg, fAgg, and fUpdate are the message function, the aggregation function, and
the node update function respectively. For the message function, we often instantiate
fMsg as an MLP. Note that if edge features are considered, one can incorporate
them as input to fMsg. fAgg could simply be an average or summation operator.
Typical examples of fUpdate include gated recurrent units (GRUs) (Cho et al, 2014a)
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and long-short term memory (LSTM) (Hochreiter and Schmidhuber, 1997). ht�1
i is

the input node representation at time step t � 1. Wi denotes the set of neighboring
nodes of the node i. h̃t�1

i is the updated node representation which serves as the
input node representation for the next message passing step. The above message
passing process is typically executed for a fixed number of steps, which is tuned
as a hyperparameter. Note that the generation step t is different from the message
passing step (we deliberately omit its notation to avoid confusion).

Output Probabilities After the message passing process is done, we obtain the
new node representations Ht . Now we can construct the aforementioned output
probabilities as follows,

hG t�1 = fReadOut(Ht) (11.27)
pAddNode = Bernoulli(s(MLPAddNode(hG t�1))) (11.28)
pAddEdge = Bernoulli(s(MLPAddEdge(hG t�1 ,hv))) (11.29)

suv = MLPNodes(ht
u,hv) 8u 2 V t�1 (11.30)

pNodes = Categorical(softmax(s)). (11.31)

Here we first summarize the graph representation hG t�1 (a vector) by reading out
from the node representation Ht via fReadOut, which could be an average operator
or an attention-based one. Based on hG t�1 , we predict the probability of adding a
new node pAddNode where s is the sigmoid function. If we decide to add a new
node by sampling 1 from the Bernoulli distribution pAddNode, we denote the new
node as v. We can initialize its representation hv as random features by sampling
either from N (0, I) or learned distribution over node type/label if provided. Then
we compute similarity scores between every existing node u in G t�1 and v as suv. s
is the concatenated vector of all similarity scores. Finally, we normalize the scores
using softmax to form the categorical distribution from which we sample an existing
node to obtain the new edge. By sampling from all these probabilities, we could
either stop the generation or obtain a new graph with a new node and/or a new edge.
We repeat this procedure by carrying on the node representations along with the
generated graphs until the model generates a stop signal from pAddNode.

Training To train the model, we need to maximize the likelihood of the observed
graphs. Recall that we need to consider the permutations that leave the graph un-
changed as discussed in Section 11.3.2.1. For simplicity, we focus on the adjacency
matrix alone following (Li et al, 2018d), i.e., G ⌘ {PAP>|P 2 PG }, where PG is
the maximal subset of P so that P1AP>

1 6= P2AP>
2 holds for any P1,P2 2 PG . The

ideal objective is to maximize the following,

max log p(G ) , max log

 

Â
P2PG

p(PAP>)

!
. (11.32)

Here we omit the variables being optimized, i.e., parameters of models defined in
Eq. (11.24) and Eq. (11.27). Note that given a node ordering (corresponding to one
specific permutation matrix P), we have a bijection between a sequence of cor-
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rect decisions and an adjacency matrix. In other words, we can equivalently write
p(PAP>) as a product of probabilities that are explained in Eq. (11.27). However, the
marginalization inside the logarithmic function on the right hand side is intractable
due to the nearly factorial size of PG in practice. Li et al (2018d) propose to ran-
domly sample a few different node orderings as P̃G and train the model with fol-
lowing approximated objective,

max log

0

@ Â
P2P̃G

p(PAP>)

1

A . (11.33)

Note that this objective is a strict lower bound of the one in Eq. (11.32). If canonical
node orderings like the SMILES ordering for molecule graphs are available, we can
also use that to compute the above objective.

Discussion This model formulates the graph generation as a sequential decision-
making process and provides a GNN-based autoregressive model to construct prob-
abilities of possible decisions at each step. The overall model design is well-
motivated. It also achieves good empirical performances in generating small graphs
like molecules (e.g., less than 40 nodes). However, since the model only generates at
most one new node and one new edge per step, the total number of generation steps
scales with the number of nodes quadratically for dense graphs. It is thus inefficient
to generate moderately large graphs (e.g., with a few hundreds of nodes).

11.3.3.2 Graph Recurrent Neural Networks (GraphRNN)

Graph Recurrent Neural Networks (GraphRNN) (You et al, 2018b) is another deep
autoregressive model which has a similar sequential decision-making formulation
and leverages RNNs to construct the conditional probabilities. We again rely on
the adjacency matrix representation of a graph, i.e., G ⌘ {PAP>|P 2 PG }. Before
dealing with the permutations, let us assume the node ordering is given so that P = I.

A Simple Variant of GraphRNN GraphRNN starts with an autoregressive de-
composition of the probability of an adjacency matrix as follows,

p(A) =
n

’
t=1

p(At |A<t), (11.34)

where At is the t-th column of the adjacency matrix A and A<t is a matrix formed
by columns A1,A2, · · · ,At�1. n is the maximum number of nodes. If a graph has
less than n nodes, we pad dummy nodes similarly as discussed in Section 11.3.1.
Then we can construct the conditional probability as an edge-independent Bernoulli
distribution,
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p(At |A<t) = Bernoulli(Qt) =
n

’
i=1

Q 1[Ai,t=1]
t,i (1�Qt,i)

1[Ai,t=0] (11.35)

Qt = fout(ht) (11.36)
ht = ftrans(ht�1,At�1), (11.37)

where Qt is a size-n vector of Bernoulli parameters. Qt,i denotes its i-th element. Ai,t
denotes the i-th element of the column vector At . fout could be an MLP which takes
the hidden state ht as input and outputs Qt . ftrans is the RNN cell function which
takes the (t � 1)-th column of the adjacency matrix At�1 and the hidden state ht�1
as input and outputs the current hidden state ht . We can use an LSTM or GRU as
the RNN cell function. Note that the conditioning on A<t is implemented via the
recurrent use of the hidden state in an RNN. The hidden state can be initialized as
zeros or randomly sampled from a standard normal distribution. This model variant
is very simple and can be easily implemented since it only consists of a few common
neural network modules, i.e., an RNN and an MLP.

Full Version of GraphRNN To further improve the model, You et al (2018b)
propose a full version of GraphRNN. The idea is to build a hierarchical RNN so that
the conditional distribution in Eq. (11.34) becomes more expressive. Specifically,
instead of using an edge-independent Bernoulli distribution, we leverage another
autoregressive construction to model the dependencies among entries within one
column of the adjacency matrix as below,

p(At |A<t) =
n

’
i=1

p(Ai,t |A<i,<t) (11.38)

p(Ai,t |A<i,<t) = sigmoid(gout(h̃i,t)) (11.39)

h̃i,t = gtrans(h̃i�1,t ,A<i,t) (11.40)

h̃0,t = ht (11.41)
ht = ftrans(ht�1,At�1). (11.42)

Here the bottom RNN cell function ftrans still recurrently updates the hidden state
to get ht , thus implementing the conditioning on all previous t � 1 columns of the
adjacency matrix A. To generate individual entries of the t-th column, the top RNN
cell function gtrans takes its own hidden state h̃i�1,t and the already generated t-th
column A as input and updates the hidden state as h̃i,t . The output distribution is a
Bernoulli parameterized by the output of an MLP gout which takes h̃i,t as input. Note
that the initial hidden state h̃0,t of the top RNN is set to the hidden state ht returned
by the bottom RNN.

Objective To train the GraphRNN, we can again resort to the maximum log
likelihood similarly to Section 11.3.3.1. We also need to deal with permutations of
nodes that leave the graph unchanged. Instead of randomly sampling a few orderings
like (Li et al, 2018d), You et al (2018b) propose to use a random-breadth-first-search
ordering. The idea is to first randomly sample a node ordering and then pick the first
node in this ordering as the root. A breadth-first-search (BFS) algorithm is applied
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starting from this root node to generate the final node ordering. Let us denote the
corresponding permutation matrix as PBFS. The final objective is,

max log
⇣

p(PBFSAP>
BFS)

⌘
, (11.43)

which is again a strict lower bound of the true log likelihood. Empirical results in
(You et al, 2018b) suggest that this random-BFS ordering provides good perfor-
mances on a few benchmarks.

Discussion The design of the GraphRNN is simple yet effective. The implemen-
tation is straightforward since most of the modules are standard. The simple variant
is more efficient than the previous GNN-based model (Li et al, 2018d) since it gener-
ates multiple edges (corresponding to one column of the adjacency matrix) per step.
Moreover, the simple variant performs comparably with the full version in the ex-
periments. Nevertheless, GraphRNN still has certain limitations. For example, RNN
highly depends on the node ordering since different node orderings would result in
very different hidden states. The sequential ordering could make two nearby (even
neighboring) nodes far away in the generation sequence (i.e., far away in the gen-
eration time step). Typically, hidden states of an RNN that are far away regarding
the generation time step tend to be quite different, thus making it hard for the model
to learn that these nearby nodes should be connected. We call this phenomenon the
sequential ordering bias.

11.3.3.3 Graph Recurrent Attention Networks (GRAN)

Following the line of the work (Li et al, 2018d; You et al, 2018b), Liao et al (2019a)
propose the graph recurrent attention networks (GRAN). It is a GNN-based autore-
gressive model, which greatly improves the previous GNN-based model (Li et al,
2018d) in terms of capacity and efficiency. Furthermore, it alleviates the sequential
ordering bias of GraphRNN (You et al, 2018b). In the following, we introduce the
details of the model.

Model We start with the adjacency matrix representation of graphs, i.e., G ⌘
{PAP>|P 2 PG }. GRAN aims at directly building a probabilistic model over the
adjacency matrix similarly to GraphRNN. Again, node/edge features are not of pri-
mary interests but can be incorporated without much modification to the model. In
particular, from the perspective of modeling the adjacency matrix, the GNN-based
autoregressive model in (Li et al, 2018d) generates one entry of the adjacency matrix
at a step, whereas GraphRNN (You et al, 2018b) generates one column of entries at
a step. GRAN takes a step further along this line by generating a block of column-
s/rows2 of the adjacency matrix at a step, which greatly improves the generation
speed. Denoting the submatrix with first k rows of the adjacency matrix A as A1:k,:,
we have the following autoregressive decomposition of the probability,

2 Since we are mainly interested in simple graphs, i.e., unweighted, undirected graphs containing
no self-loops or multiple edges, modeling columns or rows makes no difference. We adopt the
row-wise notations to follow the original paper.



242 Renjie Liao

2

1 3

4

6

5

Output distribution on
augmented edges

2

1 3

4

Graph at t-1 step

2

1 3

4

6

5

Adjacency Matrix

L�
bt�1

L�
bt�2

Graph at t step

Adjacency Matrix

L�
bt

L�
bt�1

L�
bt�2

1
2
3
4

1
2
3
4
5
6

6

5

2

1 3

4
Sampling

new block (node 5, 6) 
augmented edges (dashed)

Graph
Recurrent
Attention
Network

Fig. 11.3: The overview of the graph recurrent attention networks (GRAN). At each
step, given an already generated graph, we add a new block of nodes (block size
is 2 and color indicates the membership of individual group in the visualization)
and augmented edges (dashed lines). Then we apply GRAN to this graph to ob-
tain the output distribution over augmented edges (we show an edge-independent
Bernoulli where the line width indicates the probability of generating individual
augmented edges). Finally, we sample from the output distribution to obtain a new
graph. Adapted from Figure 1 of (Liao et al, 2019a).

p(A) =
dn/ke

’
t=1

p(A(t�1)k:tk,:|A:(t�1)k,:), (11.44)

where A:(t�1)k,: indicates the adjacency matrix that has been generated before the
t-th step (i.e., t �1 blocks with block size k). We use A(t�1)k:tk,: to denote the to-be-
generated block at t-th time step. Note that this part is a straightforward generaliza-
tion to the autoregressive model of GraphRNNs in Eq. (11.34).

To build the condition probability p(A(t�1)k:tk,:|A:(t�1)k,:), GRAN leverages a
message passing graph neural network. Specifically, denoting the already gener-
ated graph before step t (corresponding to A:(t�1)k,:) as G t�1 = (V t�1,E t�1), we
first initialize every node representation vector with its corresponding row of the
adjacency matrix, i.e., hv = Av,: for all v  (t �1)k. Since we assume the maximum
number of nodes is n and pad dummy nodes for graphs with a smaller size, hv is of
size n. At time step t, we are interested in generating a new block of nodes (corre-
sponding to A(t�1)k:tk,:) and their associated edges. For the k new nodes in the t-th
block, since their corresponding rows in the adjacency matrix are initially all zeros,
we give them an arbitrary ordering from 1 to k and use the one-hot-encoding of the
order index as an additional representation to distinguish them, denoting as xu. We
first form a new graph G̃ t = (V t , Ẽ t) by connecting the k new nodes to themselves
(excluding self-loops) and every other nodes in G t�1. We call such edges as the aug-
mented edges, which are shown as the dashed edges in Figure 11.3. In other words,
V t is the union of V t�1 and k new nodes whereas Ẽ t is the union of E t�1 and aug-
mented edges. The core part of GRAN is to construct a probability distribution over
such augmented edges from which we can sample a new graph G t . Note that G t has
the same set of nodes but potentially fewer edges compared to G̃ t . To construct the
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probability, we use a GNN with the following one-step message passing process,

mi j = fmsg(hi �h j), 8(i, j) 2 Ẽ t (11.45)

h̃i = [hikxi], 8i 2 V t (11.46)

ai j = sigmoid
�
gatt(h̃i � h̃ j)

�
, 8(i, j) 2 Ẽ t (11.47)

h0
i = GRU(hi,Â j2W(i) ai jmi j), 8i 2 V t (11.48)

where mi j is the again the message over edge (i, j) and Wi is the set of neighbor-
ing nodes of node i. The message function fmsg and the attention head gatt could
be MLPs. Note that we set xu to zeros for any node u that is in the already gener-
ated graph G t�1 since the one-hot-encoding is only used to distinguish those newly
added nodes. [akb] means concatenating two vectors a and b. The updated node
representation h0

i would serve as the input to the next message passing step. We
typically unroll this message passing for a fixed number of steps, which is set as a
hyperparameter. Note that the message passing step is independent of the generation
step. The attention weights ai j depends on the one-hot-encoding xi so that messages
on augmented edges could be weighted differently compared to those on edges be-
longing to E t�1. Based on the final node representations returned by the message
passing, we can construct the output distribution is as follows,

p(A(t�1)k:tk,:|A:(t�1)k,:) =
C

Â
c=1

ac

tK

’
i=(t�1)k+1

n

’
j=1

Qc,i, j (11.49)

a = softmax

 
tK

Â
i=(t�1)k+1

n

Â
j=1

MLPa(hR
i �hR

j )

!
(11.50)

Qc,i, j = sigmoid
�
MLPQ (hR

i �hR
j )
�
. (11.51)

Here we use a mixture of Bernoulli distributions where the mixture coefficients
are ↵ = {a1, · · · ,aC} and the parameters are {Qc,i, j}. Compared to the edge-
independent Bernoulli distribution used in the simple variant of GraphRNN, this
output distribution can capture dependencies among multiple generated edges. Fur-
thermore, it is more efficient to sample compared to the autoregressive distribution
used in the full version of GraphRNN.

Objective To train the model, we also need to deal with permutations in order
to maximize the log likelihood. Similar to the strategy used in (Li et al, 2018d;
You et al, 2018b), Liao et al (2019a) propose to use a set of canonical orderings,
i.e., breadth-first-search (BFS), depth-first-search (DFS), node-degree-descending,
node-degree-ascending, and the k-core ordering. In particular, the BFS and the DFS
ordering start from the node with the largest node degree. The k-core graph decom-
position has been shown to be very useful for modeling cohesive groups in social
networks (Seidman, 1983). The k-core of a graph G is a maximal subgraph that
contains nodes of degree k or more. Cores are nested, i.e., i-core belongs to j-core
if i > j, but they are not necessarily connected subgraphs. Most importantly, the
core decomposition, i.e., all cores ranked based on their orders, can be found in lin-
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ear time (w.r.t. the number of edges) (Batagelj and Zaversnik, 2003). Based on the
largest core number per node, we can uniquely determine a partition of all nodes,
i.e., disjoint sets of nodes which share the same largest core number. We then assign
the core number of each disjoint set by the largest core number of its nodes. Starting
from the set with the largest core number, we rank all nodes within the set in node
degree descending order. Then we move to the second largest core and so on to ob-
tain the final ordering of all nodes. We call this core descending ordering as k-core
node ordering.

Our final training objective is,

max log

0

@ Â
P2P̃G

p(PAP>)

1

A . (11.52)

where P̃G is the set of permutation matrices corresponding to the above node order-
ings. This is again a strict lower bound of the true log likelihood.

Discussion GRAN improves the previous GNN-based autoregressive model (Li
et al, 2018d) and GraphRNN (You et al, 2018b) in the following ways. First, it gen-
erates a block of rows of the adjacency matrix per step, which is more efficient than
generating an entry per step and then generating a row per step. Second, GRAN
uses a GNN to construct the conditional probability. This helps alleviate the se-
quential ordering bias in GraphRNN since GNN is permutation equivariant, i.e.,
the node ordering would not affect the conditional probability per step. Third, the
output distribution in GRAN is more expressive and more efficient for sampling.
GRAN outperforms previous deep graph generative models in terms of empirical
performances and the sizes of graphs that can be generated (e.g., GRAN can gener-
ate graphs up to 5K nodes). Nevertheless, GRAN still suffers from the fact that the
overall model depends on the particular choices of node orderings. It may be hard
to find good orderings in certain applications. How to build an order-invariant deep
graph generative model would be an interesting open question.

11.3.4 Generative Adversarial Methods

In this part, we review a few methods (De Cao and Kipf, 2018; Bojchevski et al,
2018; You et al, 2018a) that apply the idea of generative adversarial networks (GAN)
(Goodfellow et al, 2014b) in the context of graph generation. Based on how a graph
is represented during training, we roughly divide them into two categories: adja-
cency matrix based and random walks based methods. In the following, we explain
these two types of methods in detail.
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11.3.4.1 Adjacency Matrix Based GAN

MolGAN (De Cao and Kipf, 2018) and graph convolutional policy network (GCPN)
(You et al, 2018a) propose a similar GAN-based framework to generate molecule
graphs that satisfy certain chemical properties. Here the graph data is represented
slightly different from previous sections since one needs to specify both node types
(i.e., atom types) and edge types (i.e., chemical bond types). We denote the ad-
jacency matrix3 as A 2 RN⇥N⇥Y where Y is the number of chemical bond types.
Basically, one slice along the 3rd dimension of A gives an adjacency matrix that
characterizes the connectivities among atoms under a specific chemical bond type.
We denote the node type as X 2 RN⇥T where T is the number of atom types. The
goal is to generate (A,X) so that it is similar to observed molecule graphs and pos-
sesses certain desirable properties.
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Fig. 11.4: The overview of the MolGAN. We first draw a latent variable Z ⇠ p(Z)
and feed it to a generator which produces a probabilistic (continuous) adjacency ma-
trix A and a probabilistic (continuous) node type matrix X . Then we draw a discrete
adjacency matrix Ã ⇠ A and a discrete node type matrix X̃ ⇠ X , which together spec-
ify a molecule graph. During training, we simultaneously feed the generated graph
to a discriminator and a reward network to obtain the adversarial loss (measuring
how similar the generated and the observed graphs are) and the negative reward
(measuring how likely the generated graphs satisfy the certain chemical constraints).
Adapted from Figure 2 of (De Cao and Kipf, 2018).

Model We now explain the details of MolGAN and then highlight the difference
between GCPN and MolGAN. Similar to regular GANs, MolGAN consists of a
generator Ḡq (Z) and a discriminator Df (A,X). To ensure the generated samples
satisfy desirable chemical properties, MolGAN adopts an additional reward network
Ry(A,X). The overall pipeline of MolGAN is illustrated in Figure 11.4.

To generate a molecule graph, we first sample a latent variable Z 2Rd from some
prior, e.g., Z ⇠ N (0, I). Then we use an MLP to directly map the sampled Z to a
continuous adjacency matrix A and a continuous node type matrix X . The contin-
uous version of the graph data has a natural probabilistic interpretation, i.e., Ai, j,c

3 Note that A is actually a tensor. We slightly abuse the terminology here to ease the exposition.
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means the probability of connecting the atom i and the atom j using the chemical
bond type c, whereas Xi,t means the probability of assigning the t-th atom type to
the i-atom. One can sample a discrete graph data (Ã, X̃) from the continuous ver-
sion, i.e., Ã ⇠ A and X̃ ⇠ X . This sampling procedure can be implemented using the
Gumbel softmax (Jang et al, 2017; Maddison et al, 2017). The discrete adjacency
matrix Ã along with the discrete node type X̃ specify a molecule graph and complete
the generation process.

To evaluate how similar the generated graphs and the observed graphs are, we
need to build a discriminator. Since we are dealing with graphs, the natural can-
didate for a discriminator is a graph neural network, e.g., a graph convolutional
network (GCN) (Kipf and Welling, 2017b). In particular, we use a variant of GCN
(Schlichtkrull et al, 2018) to incorporate multiple edge types. One such graph con-
volutional layer is shown as below,

h0
i = tanh

 
fs(hi,xi)+

N

Â
j=1

Y

Â
y=1

Ãi, j,y

|Wi|
fy(h j,xi)

!
, (11.53)

where hi and h0
i are the input and the output node representations of the graph convo-

lutional layer. Wi is the set of neighboring nodes of the node i. xi is the i-th row of X ,
i.e., the node type vector of the node i. fs and fy are linear transformation functions
that are to be learned. After stacking this type of graph convolution for multiple lay-
ers, we can readout the graph representation using the following attention-weighted
aggregation,

hG = tanh

 

Â
v2V

sigmoid(MLPatt(hv,xv))� tanh(MLP(hv,xv))

!
, (11.54)

where hv is the node representation returned by the top graph convolutional layer.
Note that MLPatt and MLP are two different instances of MLPs. � means element-
wise product. We can use the graph representation vector hG to compute the dis-
criminator score Df (A,X), i.e., the probability of classifying a graph as positive
(i.e., coming from the data distribution).

Objective Originally, GANs learn the model by performing the minimax opti-
mization as below,

min
q

max
f

EA,X⇠pdata(A,X)[logDf (A,X)]+EZ⇠p(Z)[log
�
1�Df (Ḡq (Z))

�
],

(11.55)

where the generator aims at fooling the discriminator and the discriminator aims
at correctly classifying the generated samples and the observed samples. To ad-
dress certain issues in training GANs such as the mode collapse and the instability,
Wasserstein GAN (WGAN) (Arjovsky et al, 2017) and its improved version (Gul-
rajani et al, 2017) have been proposed. MolGAN follows the improved WGAN and
uses the following objective to train the discriminator Df (A,X),
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max
f

B

Â
i=1

�Df (A(i),X (i))+Df (Ḡq (Z(i)))+a
⇣
k—Â(i),X̂(i)Df (Â(i), X̂ (i))k�1

⌘2
,

(11.56)

where B is the mini-batch size, Z(i) is the i-th sample drawn from the prior, A(i),X (i)

are the i-th graph data drawn from the data distribution, and Â(i), X̂ (i) are their linear
combinations, i.e., (Â(i), X̂ (i)) = e(A(i),X (i)) + (1 � e)Ḡq (Z(i)), e ⇠ U (0,1). The
squared term on the right-hand side penalizes the gradient of the discriminator so
that the training becomes more stable. a is a weighting term to balance the regular-
ization and the objective. Moreover, fixing the discriminator, we train the generator
Ḡq (A,X) by adding the additional constraint-dependent reward,

min
q

B

Â
i=1

lDf (Ḡq (Z(i)))+(1�l )LRL(Ḡq (Z(i))), (11.57)

where LRL is the negative reward returned by the reward network Ry and l is the
weighting hyperparameter to regulate the trade-off between two losses. The reward
could be some non-differentiable quantities that characterize the chemical proper-
ties of the generated molecules, e.g., how likely the generated molecule is to be
soluble in water. To learn the model with the non-differentiable reward, the deep de-
terministic policy gradient (DDPG) (Lillicrap et al, 2015) is used. The architecture
of the reward network is the same as the discriminator, i.e., a GCN. It is pre-trained
by minimizing the squared error between the predicted reward given by Ry and an
external software which produces a property score per molecule. The pre-training is
necessary since the external software is typically slow and could significantly delay
the training if it is included in the whole training framework.

Discussion MolGAN demonstrates strong empirical performances on a large
chemical database called QM9 (Ramakrishnan et al, 2014). Similar to other GANs,
the model is likelihood-free and can thus enjoy more flexible and powerful gener-
ators. More importantly, although the generator still depends on the node ordering,
the discriminator and the reward networks are order (permutation) invariant since
they are built from GNNs. Interestingly enough, graph convolutional policy net-
work (GCPN) (You et al, 2018a) solves the same problem using a similar approach.
GCPN has a similar GAN-type of objective and some additional domain-specific
rewards that capture the chemical properties of the molecules. It also learns both a
generator and a discriminator. However, they do not use a reward network to speed
up the reward computation. To deal with the learning of non-differentiable reward,
GCPN leverages the proximal policy optimization (PPO) (Schulman et al, 2017)
method, which empirically performs better than the vanilla policy gradient method.
Another important difference is that GCPN generates the adjacency matrix in an
entry-by-entry autoregressive fashion so that the dependencies among multiple gen-
erated edges are captured whereas MolGAN generates all entries of the adjacency
matrix in parallel conditioned on the latent variable. GCPN also achieves impres-
sive empirical results on another large chemical database called ZINC (Irwin et al,
2012). Nevertheless, there are still limitations with the above models. The discrete
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gradient estimators (e.g., the policy gradient type of methods) could have large vari-
ances, which may slow down the training. Since the domain-specific rewards are
non-differentiable and may be time-consuming to obtain, learning a neural network
based approximated reward function like what MolGAN does is appealing. How-
ever, as reported in MolGAN, pre-training seems to be crucial to make the whole
training successful. More exploration along the line of learning a reward function
would be beneficial to simplify the whole training pipeline. On the other hand, both
methods use some variant of GCNs as the discriminator, which is shown to be in-
sufficient in distinguishing certain graphs4 (Xu et al, 2019d). Therefore, exploring
more powerful discriminators like the Lanczos network (Liao et al, 2019b) that ex-
ploits the spectrum of the graph Laplacian as the input feature would be promising
to further improve the performance of the above methods.

11.3.4.2 Random Walk Based GAN

In contrast to previous methods, NetGAN (Bojchevski et al, 2018) resorts to the
random walk based representations of graphs. The key idea is to map a graph to a
set of random walks and learn a generator and a discriminator in the space of ran-
dom walks. The generator should generate random walks that are similar to those
sampled from the observed graphs, whereas the discriminator should correctly dis-
tinguish whether a random walk comes from the data distribution or the implicit
distribution corresponding to the generator.

Model We start by sampling a set of random walks with fixed length T from
the given graph G using the biased second order random walk sampling strategy
described in (Grover and Leskovec, 2016). We denote a random walk as a sequence
(v1, · · · ,vT ) where vi represents one node in G . Note that a random walk may contain
duplicate nodes since it could revisit one node multiple times during the sampling.
We again assume the maximum number of nodes for any graph is N. For any node
vi, we use the one-hot-encoding vector as its node feature. In other words, we can
view a random walk with a sequence along with its features. Therefore, similar to
language models, it is natural to use an RNN as the generator for generating such
random walks. NetGAN exploits an LSTM as the generator of which the initial
hidden state h0 and the memory c0 are computed by feeding a randomly sampled
latent vector (drawn from N (0, I)) to two separate MLPs. Then the LSTM generator
predicts a categorical distribution over all possible nodes and then samples a node.
The one-hot-encoding of the node index is treated as the node representation and
fed to the LSTM generator as the input for the next step. We unroll this LSTM for
T steps to obtain the final length-T random walk. For the discriminator, we can
use another LSTM, which takes a random walk as input and predicts the probability
that a given random walk is sampled from the data distribution. The model is trained
with the same objective as the improved WGAN (Gulrajani et al, 2017).

4 For example, a GCN can not distinguish two triangles versus a six node circle (both have the
same number of nodes and every node has exactly two neighbors) assuming all individual node
features are identical.
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Fig. 11.5: The overview of the NetGAN. We first draw a random vector from a fixed
prior N (0, I) and initialized the memory c0 and the hidden state h0 of an LSTM.
Then the LSTM generator generates which node to visit per step and is unrolled for
a fixed number of steps T . The one-hot-encoding of node index is fed to the LSTM
as the input for the next step. The discriminator is another LSTM which performs
a binary classification to predict if a given random walk is sampled from a data
distribution. Adapted from Figure 2 of (Bojchevski et al, 2018).

After training the LSTM generator, we are capable of generating random walks.
However, we need an additional step to construct a graph from a set of generated
random walks. The strategy used by NetGAN is as follows. First, we count the edges
that appeared in the set of random walks to obtain a scoring matrix S, which has the
same size as the adjacency matrix. The (i, j)-th entry of the score matrix Si, j in-
dicates how many times edge (i, j) appears in the set of generated random walks.
Second, for each node i, we sample a neighbor according to the probability Si, j

Âv Si,v
.

We repeat the sampling until node i has at least one neighbor connected and skip if
the edge has already been generated. At last, for any edge (i, j), we perform sam-
pling without replacement according to the probability Si, j

Âu,v Su,v
until the maximum

number of edges is reached.
Discussion The random walk based representations for graphs are novel in the

context of deep graph generative models. Moreover, they could be more scalable
than the adjacency matrix representation since we are not bound by the quadratic
(w.r.t. the number of nodes) complexity. The core modules of the NetGAN are
LSTMs which are efficient in handling sequences and easy to be implemented. Nev-
ertheless, the graph construction from a set of generated random walks seems to be
ad-hoc. There is no theoretical guarantee on how accurate the proposed construc-
tion method is. It may require a large number of sampled random walks in order to
generate a graph with good qualities.
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11.4 Summary

In this chapter, we review a few classic graph generative models and some modern
ones which are constructed based on deep neural networks. From the perspectives
of the model capacity and the empirical performances, e.g., how good the model can
fit observed data, deep graph generative models significantly outperform their clas-
sic counterparts. For example, they could generate molecule graphs which are both
chemically valid and similar to observed ones in terms of certain graph statistics.

Although we have already made impressive progress in recent years, deep gen-
erative models are still in the early stage. Moving forward, there are at least two
main challenges. First, how can we scale these models so that they can handle real-
world graphs like large scale social networks and WWW? It requires not only more
computational resources but also more algorithmic improvements. For example,
building a hierarchical graph generative model would be one promising direction
to boost efficiency and scale. Second, how can we effectively add domain-specific
constraints and/or conditioning on some input information? This question is impor-
tant since many real-world applications require the graph generation to be condi-
tioned on some inputs (e.g., scene graph generations conditioned on input images).
Many graphs in practice come with certain constraints (e.g., chemical validity in the
molecule generation).

Editor’s Notes: Deep learning-based graph generation can be considered as
a downstream task of graph representation learning, where the learned rep-
resentations are usually enforced to follow some probabilistic assumptions.
Hence the techniques in this topic widely enjoy the relevant properties and
theories introduced in the previous chapters, such as scalability (Chapter
6), expressiveness power (Chapter 5), and robustness (Chapter 8). Graph
generation also further motivates its downstream tasks in various interest-
ing, important, yet usually challenging areas such as drug discovery (see
Chapter 24), protein analysis (see Chapter 25), and program synthesis (see
Chapter 22).


